Metamath Proof Explorer


Theorem 4lt9

Description: 4 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 4lt9
|- 4 < 9

Proof

Step Hyp Ref Expression
1 4lt5
 |-  4 < 5
2 5lt9
 |-  5 < 9
3 4re
 |-  4 e. RR
4 5re
 |-  5 e. RR
5 9re
 |-  9 e. RR
6 3 4 5 lttri
 |-  ( ( 4 < 5 /\ 5 < 9 ) -> 4 < 9 )
7 1 2 6 mp2an
 |-  4 < 9