| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3noncol.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | 3noncol.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | 3noncol.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | simp11 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) | 
						
							| 5 | 4 | hllatd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) | 
						
							| 6 |  | simp2l |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) | 
						
							| 7 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 8 | 7 3 | atbase |  |-  ( R e. A -> R e. ( Base ` K ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) | 
						
							| 10 |  | simp12 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) | 
						
							| 11 | 7 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. ( Base ` K ) ) | 
						
							| 13 |  | simp13 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) | 
						
							| 14 | 7 3 | atbase |  |-  ( Q e. A -> Q e. ( Base ` K ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. ( Base ` K ) ) | 
						
							| 16 |  | simp32 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. R .<_ ( P .\/ Q ) ) | 
						
							| 17 | 7 1 2 | latnlej1r |  |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R =/= Q ) | 
						
							| 18 | 5 9 12 15 16 17 | syl131anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R =/= Q ) | 
						
							| 19 | 18 | necomd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q =/= R ) | 
						
							| 20 |  | simp2r |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) | 
						
							| 21 | 7 3 | atbase |  |-  ( S e. A -> S e. ( Base ` K ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) | 
						
							| 23 | 7 2 | latjcl |  |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) | 
						
							| 24 | 5 15 9 23 | syl3anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) | 
						
							| 25 |  | simp33 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 26 | 2 3 | hlatjass |  |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) = ( P .\/ ( Q .\/ R ) ) ) | 
						
							| 27 | 4 10 13 6 26 | syl13anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( P .\/ ( Q .\/ R ) ) ) | 
						
							| 28 | 27 | breq2d |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) <-> S .<_ ( P .\/ ( Q .\/ R ) ) ) ) | 
						
							| 29 | 25 28 | mtbid |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. S .<_ ( P .\/ ( Q .\/ R ) ) ) | 
						
							| 30 | 7 1 2 | latnlej2r |  |-  ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ -. S .<_ ( P .\/ ( Q .\/ R ) ) ) -> -. S .<_ ( Q .\/ R ) ) | 
						
							| 31 | 5 22 12 24 29 30 | syl131anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. S .<_ ( Q .\/ R ) ) | 
						
							| 32 |  | simp31 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P =/= Q ) | 
						
							| 33 | 1 2 3 | hlatexch1 |  |-  ( ( K e. HL /\ ( P e. A /\ R e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .<_ ( Q .\/ R ) -> R .<_ ( Q .\/ P ) ) ) | 
						
							| 34 | 4 10 6 13 32 33 | syl131anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .<_ ( Q .\/ R ) -> R .<_ ( Q .\/ P ) ) ) | 
						
							| 35 | 7 2 | latjcom |  |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 36 | 5 12 15 35 | syl3anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) | 
						
							| 37 | 36 | breq2d |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .<_ ( P .\/ Q ) <-> R .<_ ( Q .\/ P ) ) ) | 
						
							| 38 | 34 37 | sylibrd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .<_ ( Q .\/ R ) -> R .<_ ( P .\/ Q ) ) ) | 
						
							| 39 | 16 38 | mtod |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. P .<_ ( Q .\/ R ) ) | 
						
							| 40 | 7 1 2 3 | hlexch1 |  |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ -. P .<_ ( Q .\/ R ) ) -> ( P .<_ ( ( Q .\/ R ) .\/ S ) -> S .<_ ( ( Q .\/ R ) .\/ P ) ) ) | 
						
							| 41 | 4 10 20 24 39 40 | syl131anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .<_ ( ( Q .\/ R ) .\/ S ) -> S .<_ ( ( Q .\/ R ) .\/ P ) ) ) | 
						
							| 42 | 7 2 | latjcom |  |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) | 
						
							| 43 | 5 15 9 42 | syl3anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( R .\/ Q ) .\/ P ) ) | 
						
							| 45 | 7 2 | latj31 |  |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( R .\/ Q ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 46 | 5 9 15 12 45 | syl13anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .\/ Q ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 47 | 44 46 | eqtrd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 48 | 47 | breq2d |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S .<_ ( ( Q .\/ R ) .\/ P ) <-> S .<_ ( ( P .\/ Q ) .\/ R ) ) ) | 
						
							| 49 | 41 48 | sylibd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .<_ ( ( Q .\/ R ) .\/ S ) -> S .<_ ( ( P .\/ Q ) .\/ R ) ) ) | 
						
							| 50 | 25 49 | mtod |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. P .<_ ( ( Q .\/ R ) .\/ S ) ) | 
						
							| 51 | 19 31 50 | 3jca |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) ) |