Metamath Proof Explorer


Theorem 4p4e8

Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 4p4e8
|- ( 4 + 4 ) = 8

Proof

Step Hyp Ref Expression
1 df-4
 |-  4 = ( 3 + 1 )
2 1 oveq2i
 |-  ( 4 + 4 ) = ( 4 + ( 3 + 1 ) )
3 4cn
 |-  4 e. CC
4 3cn
 |-  3 e. CC
5 ax-1cn
 |-  1 e. CC
6 3 4 5 addassi
 |-  ( ( 4 + 3 ) + 1 ) = ( 4 + ( 3 + 1 ) )
7 2 6 eqtr4i
 |-  ( 4 + 4 ) = ( ( 4 + 3 ) + 1 )
8 df-8
 |-  8 = ( 7 + 1 )
9 4p3e7
 |-  ( 4 + 3 ) = 7
10 9 oveq1i
 |-  ( ( 4 + 3 ) + 1 ) = ( 7 + 1 )
11 8 10 eqtr4i
 |-  8 = ( ( 4 + 3 ) + 1 )
12 7 11 eqtr4i
 |-  ( 4 + 4 ) = 8