Metamath Proof Explorer


Theorem 4re

Description: The number 4 is real. (Contributed by NM, 27-May-1999)

Ref Expression
Assertion 4re
|- 4 e. RR

Proof

Step Hyp Ref Expression
1 df-4
 |-  4 = ( 3 + 1 )
2 3re
 |-  3 e. RR
3 1re
 |-  1 e. RR
4 2 3 readdcli
 |-  ( 3 + 1 ) e. RR
5 1 4 eqeltri
 |-  4 e. RR