| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4sq.1 |  |-  S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } | 
						
							| 2 |  | 4sq.2 |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | 4sq.3 |  |-  ( ph -> P = ( ( 2 x. N ) + 1 ) ) | 
						
							| 4 |  | 4sq.4 |  |-  ( ph -> P e. Prime ) | 
						
							| 5 |  | 4sqlem11.5 |  |-  A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } | 
						
							| 6 |  | 4sqlem11.6 |  |-  F = ( v e. A |-> ( ( P - 1 ) - v ) ) | 
						
							| 7 |  | fzfid |  |-  ( ph -> ( 0 ... ( P - 1 ) ) e. Fin ) | 
						
							| 8 |  | elfzelz |  |-  ( m e. ( 0 ... N ) -> m e. ZZ ) | 
						
							| 9 |  | zsqcl |  |-  ( m e. ZZ -> ( m ^ 2 ) e. ZZ ) | 
						
							| 10 | 8 9 | syl |  |-  ( m e. ( 0 ... N ) -> ( m ^ 2 ) e. ZZ ) | 
						
							| 11 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 13 |  | zmodfz |  |-  ( ( ( m ^ 2 ) e. ZZ /\ P e. NN ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 14 | 10 12 13 | syl2anr |  |-  ( ( ph /\ m e. ( 0 ... N ) ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 15 |  | eleq1a |  |-  ( ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) -> ( u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ph /\ m e. ( 0 ... N ) ) -> ( u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 17 | 16 | rexlimdva |  |-  ( ph -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 18 | 17 | abssdv |  |-  ( ph -> { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } C_ ( 0 ... ( P - 1 ) ) ) | 
						
							| 19 | 5 18 | eqsstrid |  |-  ( ph -> A C_ ( 0 ... ( P - 1 ) ) ) | 
						
							| 20 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 21 | 4 20 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 22 |  | peano2zm |  |-  ( P e. ZZ -> ( P - 1 ) e. ZZ ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> ( P - 1 ) e. ZZ ) | 
						
							| 24 | 23 | zcnd |  |-  ( ph -> ( P - 1 ) e. CC ) | 
						
							| 25 | 24 | addlidd |  |-  ( ph -> ( 0 + ( P - 1 ) ) = ( P - 1 ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( ph -> ( ( 0 + ( P - 1 ) ) - v ) = ( ( P - 1 ) - v ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ v e. A ) -> ( ( 0 + ( P - 1 ) ) - v ) = ( ( P - 1 ) - v ) ) | 
						
							| 28 | 19 | sselda |  |-  ( ( ph /\ v e. A ) -> v e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 29 |  | fzrev3i |  |-  ( v e. ( 0 ... ( P - 1 ) ) -> ( ( 0 + ( P - 1 ) ) - v ) e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ph /\ v e. A ) -> ( ( 0 + ( P - 1 ) ) - v ) e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 31 | 27 30 | eqeltrrd |  |-  ( ( ph /\ v e. A ) -> ( ( P - 1 ) - v ) e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 32 | 31 6 | fmptd |  |-  ( ph -> F : A --> ( 0 ... ( P - 1 ) ) ) | 
						
							| 33 | 32 | frnd |  |-  ( ph -> ran F C_ ( 0 ... ( P - 1 ) ) ) | 
						
							| 34 | 19 33 | unssd |  |-  ( ph -> ( A u. ran F ) C_ ( 0 ... ( P - 1 ) ) ) | 
						
							| 35 | 7 34 | ssfid |  |-  ( ph -> ( A u. ran F ) e. Fin ) | 
						
							| 36 |  | hashcl |  |-  ( ( A u. ran F ) e. Fin -> ( # ` ( A u. ran F ) ) e. NN0 ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> ( # ` ( A u. ran F ) ) e. NN0 ) | 
						
							| 38 | 37 | nn0red |  |-  ( ph -> ( # ` ( A u. ran F ) ) e. RR ) | 
						
							| 39 | 21 | zred |  |-  ( ph -> P e. RR ) | 
						
							| 40 |  | ssdomg |  |-  ( ( 0 ... ( P - 1 ) ) e. Fin -> ( ( A u. ran F ) C_ ( 0 ... ( P - 1 ) ) -> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 41 | 7 34 40 | sylc |  |-  ( ph -> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) | 
						
							| 42 |  | hashdom |  |-  ( ( ( A u. ran F ) e. Fin /\ ( 0 ... ( P - 1 ) ) e. Fin ) -> ( ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) <-> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 43 | 35 7 42 | syl2anc |  |-  ( ph -> ( ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) <-> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 44 | 41 43 | mpbird |  |-  ( ph -> ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 45 |  | fz01en |  |-  ( P e. ZZ -> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) | 
						
							| 46 | 21 45 | syl |  |-  ( ph -> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) | 
						
							| 47 |  | fzfid |  |-  ( ph -> ( 1 ... P ) e. Fin ) | 
						
							| 48 |  | hashen |  |-  ( ( ( 0 ... ( P - 1 ) ) e. Fin /\ ( 1 ... P ) e. Fin ) -> ( ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) <-> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) ) | 
						
							| 49 | 7 47 48 | syl2anc |  |-  ( ph -> ( ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) <-> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) ) | 
						
							| 50 | 46 49 | mpbird |  |-  ( ph -> ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) ) | 
						
							| 51 | 12 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 52 |  | hashfz1 |  |-  ( P e. NN0 -> ( # ` ( 1 ... P ) ) = P ) | 
						
							| 53 | 51 52 | syl |  |-  ( ph -> ( # ` ( 1 ... P ) ) = P ) | 
						
							| 54 | 50 53 | eqtrd |  |-  ( ph -> ( # ` ( 0 ... ( P - 1 ) ) ) = P ) | 
						
							| 55 | 44 54 | breqtrd |  |-  ( ph -> ( # ` ( A u. ran F ) ) <_ P ) | 
						
							| 56 | 38 39 55 | lensymd |  |-  ( ph -> -. P < ( # ` ( A u. ran F ) ) ) | 
						
							| 57 | 39 | adantr |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> P e. RR ) | 
						
							| 58 | 57 | ltp1d |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> P < ( P + 1 ) ) | 
						
							| 59 | 2 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 60 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 61 | 59 59 60 60 | add4d |  |-  ( ph -> ( ( N + N ) + ( 1 + 1 ) ) = ( ( N + 1 ) + ( N + 1 ) ) ) | 
						
							| 62 | 3 | oveq1d |  |-  ( ph -> ( P + 1 ) = ( ( ( 2 x. N ) + 1 ) + 1 ) ) | 
						
							| 63 |  | 2cn |  |-  2 e. CC | 
						
							| 64 |  | mulcl |  |-  ( ( 2 e. CC /\ N e. CC ) -> ( 2 x. N ) e. CC ) | 
						
							| 65 | 63 59 64 | sylancr |  |-  ( ph -> ( 2 x. N ) e. CC ) | 
						
							| 66 | 65 60 60 | addassd |  |-  ( ph -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) ) | 
						
							| 67 | 59 | 2timesd |  |-  ( ph -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 68 | 67 | oveq1d |  |-  ( ph -> ( ( 2 x. N ) + ( 1 + 1 ) ) = ( ( N + N ) + ( 1 + 1 ) ) ) | 
						
							| 69 | 62 66 68 | 3eqtrd |  |-  ( ph -> ( P + 1 ) = ( ( N + N ) + ( 1 + 1 ) ) ) | 
						
							| 70 | 14 | ex |  |-  ( ph -> ( m e. ( 0 ... N ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 71 | 12 | adantr |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. NN ) | 
						
							| 72 | 8 | ad2antrl |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. ZZ ) | 
						
							| 73 | 72 9 | syl |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m ^ 2 ) e. ZZ ) | 
						
							| 74 |  | elfzelz |  |-  ( u e. ( 0 ... N ) -> u e. ZZ ) | 
						
							| 75 | 74 | ad2antll |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. ZZ ) | 
						
							| 76 |  | zsqcl |  |-  ( u e. ZZ -> ( u ^ 2 ) e. ZZ ) | 
						
							| 77 | 75 76 | syl |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( u ^ 2 ) e. ZZ ) | 
						
							| 78 |  | moddvds |  |-  ( ( P e. NN /\ ( m ^ 2 ) e. ZZ /\ ( u ^ 2 ) e. ZZ ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> P || ( ( m ^ 2 ) - ( u ^ 2 ) ) ) ) | 
						
							| 79 | 71 73 77 78 | syl3anc |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> P || ( ( m ^ 2 ) - ( u ^ 2 ) ) ) ) | 
						
							| 80 | 72 | zcnd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. CC ) | 
						
							| 81 | 75 | zcnd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. CC ) | 
						
							| 82 |  | subsq |  |-  ( ( m e. CC /\ u e. CC ) -> ( ( m ^ 2 ) - ( u ^ 2 ) ) = ( ( m + u ) x. ( m - u ) ) ) | 
						
							| 83 | 80 81 82 | syl2anc |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m ^ 2 ) - ( u ^ 2 ) ) = ( ( m + u ) x. ( m - u ) ) ) | 
						
							| 84 | 83 | breq2d |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( ( m ^ 2 ) - ( u ^ 2 ) ) <-> P || ( ( m + u ) x. ( m - u ) ) ) ) | 
						
							| 85 | 4 | adantr |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. Prime ) | 
						
							| 86 | 72 75 | zaddcld |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) e. ZZ ) | 
						
							| 87 | 72 75 | zsubcld |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - u ) e. ZZ ) | 
						
							| 88 |  | euclemma |  |-  ( ( P e. Prime /\ ( m + u ) e. ZZ /\ ( m - u ) e. ZZ ) -> ( P || ( ( m + u ) x. ( m - u ) ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) | 
						
							| 89 | 85 86 87 88 | syl3anc |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( ( m + u ) x. ( m - u ) ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) | 
						
							| 90 | 79 84 89 | 3bitrd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) | 
						
							| 91 | 86 | zred |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) e. RR ) | 
						
							| 92 |  | 2re |  |-  2 e. RR | 
						
							| 93 | 2 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 94 |  | remulcl |  |-  ( ( 2 e. RR /\ N e. RR ) -> ( 2 x. N ) e. RR ) | 
						
							| 95 | 92 93 94 | sylancr |  |-  ( ph -> ( 2 x. N ) e. RR ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) e. RR ) | 
						
							| 97 | 85 20 | syl |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. ZZ ) | 
						
							| 98 | 97 | zred |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. RR ) | 
						
							| 99 | 72 | zred |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. RR ) | 
						
							| 100 | 75 | zred |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. RR ) | 
						
							| 101 | 93 | adantr |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> N e. RR ) | 
						
							| 102 |  | elfzle2 |  |-  ( m e. ( 0 ... N ) -> m <_ N ) | 
						
							| 103 | 102 | ad2antrl |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m <_ N ) | 
						
							| 104 |  | elfzle2 |  |-  ( u e. ( 0 ... N ) -> u <_ N ) | 
						
							| 105 | 104 | ad2antll |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u <_ N ) | 
						
							| 106 | 99 100 101 101 103 105 | le2addd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) <_ ( N + N ) ) | 
						
							| 107 | 59 | adantr |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> N e. CC ) | 
						
							| 108 | 107 | 2timesd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 109 | 106 108 | breqtrrd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) <_ ( 2 x. N ) ) | 
						
							| 110 | 95 | ltp1d |  |-  ( ph -> ( 2 x. N ) < ( ( 2 x. N ) + 1 ) ) | 
						
							| 111 | 110 3 | breqtrrd |  |-  ( ph -> ( 2 x. N ) < P ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) < P ) | 
						
							| 113 | 91 96 98 109 112 | lelttrd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) < P ) | 
						
							| 114 | 91 98 | ltnled |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m + u ) < P <-> -. P <_ ( m + u ) ) ) | 
						
							| 115 | 113 114 | mpbid |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> -. P <_ ( m + u ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P <_ ( m + u ) ) | 
						
							| 117 | 21 | ad2antrr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> P e. ZZ ) | 
						
							| 118 | 86 | adantr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. ZZ ) | 
						
							| 119 |  | 1red |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 e. RR ) | 
						
							| 120 |  | nn0abscl |  |-  ( ( m - u ) e. ZZ -> ( abs ` ( m - u ) ) e. NN0 ) | 
						
							| 121 | 87 120 | syl |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) e. NN0 ) | 
						
							| 122 | 121 | nn0red |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) e. RR ) | 
						
							| 123 | 122 | adantr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. RR ) | 
						
							| 124 | 118 | zred |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. RR ) | 
						
							| 125 | 121 | adantr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. NN0 ) | 
						
							| 126 | 125 | nn0zd |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. ZZ ) | 
						
							| 127 | 87 | zcnd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - u ) e. CC ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m - u ) e. CC ) | 
						
							| 129 | 80 81 | subeq0ad |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m - u ) = 0 <-> m = u ) ) | 
						
							| 130 | 129 | necon3bid |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m - u ) =/= 0 <-> m =/= u ) ) | 
						
							| 131 | 130 | biimpar |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m - u ) =/= 0 ) | 
						
							| 132 | 128 131 | absrpcld |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. RR+ ) | 
						
							| 133 | 132 | rpgt0d |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 0 < ( abs ` ( m - u ) ) ) | 
						
							| 134 |  | elnnz |  |-  ( ( abs ` ( m - u ) ) e. NN <-> ( ( abs ` ( m - u ) ) e. ZZ /\ 0 < ( abs ` ( m - u ) ) ) ) | 
						
							| 135 | 126 133 134 | sylanbrc |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. NN ) | 
						
							| 136 | 135 | nnge1d |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 <_ ( abs ` ( m - u ) ) ) | 
						
							| 137 |  | 0cnd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 e. CC ) | 
						
							| 138 | 80 81 137 | abs3difd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) <_ ( ( abs ` ( m - 0 ) ) + ( abs ` ( 0 - u ) ) ) ) | 
						
							| 139 | 80 | subid1d |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - 0 ) = m ) | 
						
							| 140 | 139 | fveq2d |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - 0 ) ) = ( abs ` m ) ) | 
						
							| 141 |  | elfzle1 |  |-  ( m e. ( 0 ... N ) -> 0 <_ m ) | 
						
							| 142 | 141 | ad2antrl |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 <_ m ) | 
						
							| 143 | 99 142 | absidd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` m ) = m ) | 
						
							| 144 | 140 143 | eqtrd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - 0 ) ) = m ) | 
						
							| 145 |  | 0cn |  |-  0 e. CC | 
						
							| 146 |  | abssub |  |-  ( ( 0 e. CC /\ u e. CC ) -> ( abs ` ( 0 - u ) ) = ( abs ` ( u - 0 ) ) ) | 
						
							| 147 | 145 81 146 | sylancr |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( 0 - u ) ) = ( abs ` ( u - 0 ) ) ) | 
						
							| 148 | 81 | subid1d |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( u - 0 ) = u ) | 
						
							| 149 | 148 | fveq2d |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( u - 0 ) ) = ( abs ` u ) ) | 
						
							| 150 |  | elfzle1 |  |-  ( u e. ( 0 ... N ) -> 0 <_ u ) | 
						
							| 151 | 150 | ad2antll |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 <_ u ) | 
						
							| 152 | 100 151 | absidd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` u ) = u ) | 
						
							| 153 | 147 149 152 | 3eqtrd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( 0 - u ) ) = u ) | 
						
							| 154 | 144 153 | oveq12d |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( abs ` ( m - 0 ) ) + ( abs ` ( 0 - u ) ) ) = ( m + u ) ) | 
						
							| 155 | 138 154 | breqtrd |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) <_ ( m + u ) ) | 
						
							| 156 | 155 | adantr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) <_ ( m + u ) ) | 
						
							| 157 | 119 123 124 136 156 | letrd |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 <_ ( m + u ) ) | 
						
							| 158 |  | elnnz1 |  |-  ( ( m + u ) e. NN <-> ( ( m + u ) e. ZZ /\ 1 <_ ( m + u ) ) ) | 
						
							| 159 | 118 157 158 | sylanbrc |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. NN ) | 
						
							| 160 |  | dvdsle |  |-  ( ( P e. ZZ /\ ( m + u ) e. NN ) -> ( P || ( m + u ) -> P <_ ( m + u ) ) ) | 
						
							| 161 | 117 159 160 | syl2anc |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( P || ( m + u ) -> P <_ ( m + u ) ) ) | 
						
							| 162 | 116 161 | mtod |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P || ( m + u ) ) | 
						
							| 163 | 162 | ex |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m =/= u -> -. P || ( m + u ) ) ) | 
						
							| 164 | 163 | necon4ad |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m + u ) -> m = u ) ) | 
						
							| 165 |  | dvdsabsb |  |-  ( ( P e. ZZ /\ ( m - u ) e. ZZ ) -> ( P || ( m - u ) <-> P || ( abs ` ( m - u ) ) ) ) | 
						
							| 166 | 97 87 165 | syl2anc |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m - u ) <-> P || ( abs ` ( m - u ) ) ) ) | 
						
							| 167 |  | letr |  |-  ( ( P e. RR /\ ( abs ` ( m - u ) ) e. RR /\ ( m + u ) e. RR ) -> ( ( P <_ ( abs ` ( m - u ) ) /\ ( abs ` ( m - u ) ) <_ ( m + u ) ) -> P <_ ( m + u ) ) ) | 
						
							| 168 | 98 122 91 167 | syl3anc |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( P <_ ( abs ` ( m - u ) ) /\ ( abs ` ( m - u ) ) <_ ( m + u ) ) -> P <_ ( m + u ) ) ) | 
						
							| 169 | 155 168 | mpan2d |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P <_ ( abs ` ( m - u ) ) -> P <_ ( m + u ) ) ) | 
						
							| 170 | 115 169 | mtod |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> -. P <_ ( abs ` ( m - u ) ) ) | 
						
							| 171 | 170 | adantr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P <_ ( abs ` ( m - u ) ) ) | 
						
							| 172 | 97 | adantr |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> P e. ZZ ) | 
						
							| 173 |  | dvdsle |  |-  ( ( P e. ZZ /\ ( abs ` ( m - u ) ) e. NN ) -> ( P || ( abs ` ( m - u ) ) -> P <_ ( abs ` ( m - u ) ) ) ) | 
						
							| 174 | 172 135 173 | syl2anc |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( P || ( abs ` ( m - u ) ) -> P <_ ( abs ` ( m - u ) ) ) ) | 
						
							| 175 | 171 174 | mtod |  |-  ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P || ( abs ` ( m - u ) ) ) | 
						
							| 176 | 175 | ex |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m =/= u -> -. P || ( abs ` ( m - u ) ) ) ) | 
						
							| 177 | 176 | necon4ad |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( abs ` ( m - u ) ) -> m = u ) ) | 
						
							| 178 | 166 177 | sylbid |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m - u ) -> m = u ) ) | 
						
							| 179 | 164 178 | jaod |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( P || ( m + u ) \/ P || ( m - u ) ) -> m = u ) ) | 
						
							| 180 | 90 179 | sylbid |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) -> m = u ) ) | 
						
							| 181 |  | oveq1 |  |-  ( m = u -> ( m ^ 2 ) = ( u ^ 2 ) ) | 
						
							| 182 | 181 | oveq1d |  |-  ( m = u -> ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) ) | 
						
							| 183 | 180 182 | impbid1 |  |-  ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> m = u ) ) | 
						
							| 184 | 183 | ex |  |-  ( ph -> ( ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> m = u ) ) ) | 
						
							| 185 | 70 184 | dom2lem |  |-  ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-> ( 0 ... ( P - 1 ) ) ) | 
						
							| 186 |  | f1f1orn |  |-  ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-> ( 0 ... ( P - 1 ) ) -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) | 
						
							| 187 | 185 186 | syl |  |-  ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) | 
						
							| 188 |  | eqid |  |-  ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) = ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) | 
						
							| 189 | 188 | rnmpt |  |-  ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } | 
						
							| 190 | 5 189 | eqtr4i |  |-  A = ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) | 
						
							| 191 |  | f1oeq3 |  |-  ( A = ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) -> ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A <-> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) ) | 
						
							| 192 | 190 191 | ax-mp |  |-  ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A <-> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) | 
						
							| 193 | 187 192 | sylibr |  |-  ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A ) | 
						
							| 194 |  | ovex |  |-  ( 0 ... N ) e. _V | 
						
							| 195 | 194 | f1oen |  |-  ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A -> ( 0 ... N ) ~~ A ) | 
						
							| 196 | 193 195 | syl |  |-  ( ph -> ( 0 ... N ) ~~ A ) | 
						
							| 197 | 196 | ensymd |  |-  ( ph -> A ~~ ( 0 ... N ) ) | 
						
							| 198 |  | ax-1cn |  |-  1 e. CC | 
						
							| 199 |  | pncan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 200 | 59 198 199 | sylancl |  |-  ( ph -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 201 | 200 | oveq2d |  |-  ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) | 
						
							| 202 | 2 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 203 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 204 | 202 203 | syl |  |-  ( ph -> ( N + 1 ) e. NN0 ) | 
						
							| 205 | 204 | nn0zd |  |-  ( ph -> ( N + 1 ) e. ZZ ) | 
						
							| 206 |  | fz01en |  |-  ( ( N + 1 ) e. ZZ -> ( 0 ... ( ( N + 1 ) - 1 ) ) ~~ ( 1 ... ( N + 1 ) ) ) | 
						
							| 207 | 205 206 | syl |  |-  ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) ~~ ( 1 ... ( N + 1 ) ) ) | 
						
							| 208 | 201 207 | eqbrtrrd |  |-  ( ph -> ( 0 ... N ) ~~ ( 1 ... ( N + 1 ) ) ) | 
						
							| 209 |  | entr |  |-  ( ( A ~~ ( 0 ... N ) /\ ( 0 ... N ) ~~ ( 1 ... ( N + 1 ) ) ) -> A ~~ ( 1 ... ( N + 1 ) ) ) | 
						
							| 210 | 197 208 209 | syl2anc |  |-  ( ph -> A ~~ ( 1 ... ( N + 1 ) ) ) | 
						
							| 211 | 7 19 | ssfid |  |-  ( ph -> A e. Fin ) | 
						
							| 212 |  | fzfid |  |-  ( ph -> ( 1 ... ( N + 1 ) ) e. Fin ) | 
						
							| 213 |  | hashen |  |-  ( ( A e. Fin /\ ( 1 ... ( N + 1 ) ) e. Fin ) -> ( ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) <-> A ~~ ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 214 | 211 212 213 | syl2anc |  |-  ( ph -> ( ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) <-> A ~~ ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 215 | 210 214 | mpbird |  |-  ( ph -> ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 216 |  | hashfz1 |  |-  ( ( N + 1 ) e. NN0 -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) | 
						
							| 217 | 204 216 | syl |  |-  ( ph -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) | 
						
							| 218 | 215 217 | eqtrd |  |-  ( ph -> ( # ` A ) = ( N + 1 ) ) | 
						
							| 219 | 31 | ex |  |-  ( ph -> ( v e. A -> ( ( P - 1 ) - v ) e. ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 220 | 24 | adantr |  |-  ( ( ph /\ ( v e. A /\ k e. A ) ) -> ( P - 1 ) e. CC ) | 
						
							| 221 |  | fzssuz |  |-  ( 0 ... ( P - 1 ) ) C_ ( ZZ>= ` 0 ) | 
						
							| 222 |  | uzssz |  |-  ( ZZ>= ` 0 ) C_ ZZ | 
						
							| 223 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 224 | 222 223 | sstri |  |-  ( ZZ>= ` 0 ) C_ CC | 
						
							| 225 | 221 224 | sstri |  |-  ( 0 ... ( P - 1 ) ) C_ CC | 
						
							| 226 | 19 225 | sstrdi |  |-  ( ph -> A C_ CC ) | 
						
							| 227 | 226 | sselda |  |-  ( ( ph /\ v e. A ) -> v e. CC ) | 
						
							| 228 | 227 | adantrr |  |-  ( ( ph /\ ( v e. A /\ k e. A ) ) -> v e. CC ) | 
						
							| 229 | 226 | sselda |  |-  ( ( ph /\ k e. A ) -> k e. CC ) | 
						
							| 230 | 229 | adantrl |  |-  ( ( ph /\ ( v e. A /\ k e. A ) ) -> k e. CC ) | 
						
							| 231 | 220 228 230 | subcanad |  |-  ( ( ph /\ ( v e. A /\ k e. A ) ) -> ( ( ( P - 1 ) - v ) = ( ( P - 1 ) - k ) <-> v = k ) ) | 
						
							| 232 | 231 | ex |  |-  ( ph -> ( ( v e. A /\ k e. A ) -> ( ( ( P - 1 ) - v ) = ( ( P - 1 ) - k ) <-> v = k ) ) ) | 
						
							| 233 | 219 232 | dom2lem |  |-  ( ph -> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) | 
						
							| 234 |  | f1eq1 |  |-  ( F = ( v e. A |-> ( ( P - 1 ) - v ) ) -> ( F : A -1-1-> ( 0 ... ( P - 1 ) ) <-> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 235 | 6 234 | ax-mp |  |-  ( F : A -1-1-> ( 0 ... ( P - 1 ) ) <-> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) | 
						
							| 236 | 233 235 | sylibr |  |-  ( ph -> F : A -1-1-> ( 0 ... ( P - 1 ) ) ) | 
						
							| 237 |  | f1f1orn |  |-  ( F : A -1-1-> ( 0 ... ( P - 1 ) ) -> F : A -1-1-onto-> ran F ) | 
						
							| 238 | 236 237 | syl |  |-  ( ph -> F : A -1-1-onto-> ran F ) | 
						
							| 239 | 211 238 | hasheqf1od |  |-  ( ph -> ( # ` A ) = ( # ` ran F ) ) | 
						
							| 240 | 239 218 | eqtr3d |  |-  ( ph -> ( # ` ran F ) = ( N + 1 ) ) | 
						
							| 241 | 218 240 | oveq12d |  |-  ( ph -> ( ( # ` A ) + ( # ` ran F ) ) = ( ( N + 1 ) + ( N + 1 ) ) ) | 
						
							| 242 | 61 69 241 | 3eqtr4d |  |-  ( ph -> ( P + 1 ) = ( ( # ` A ) + ( # ` ran F ) ) ) | 
						
							| 243 | 242 | adantr |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( P + 1 ) = ( ( # ` A ) + ( # ` ran F ) ) ) | 
						
							| 244 | 211 | adantr |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> A e. Fin ) | 
						
							| 245 | 7 33 | ssfid |  |-  ( ph -> ran F e. Fin ) | 
						
							| 246 | 245 | adantr |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> ran F e. Fin ) | 
						
							| 247 |  | simpr |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( A i^i ran F ) = (/) ) | 
						
							| 248 |  | hashun |  |-  ( ( A e. Fin /\ ran F e. Fin /\ ( A i^i ran F ) = (/) ) -> ( # ` ( A u. ran F ) ) = ( ( # ` A ) + ( # ` ran F ) ) ) | 
						
							| 249 | 244 246 247 248 | syl3anc |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( # ` ( A u. ran F ) ) = ( ( # ` A ) + ( # ` ran F ) ) ) | 
						
							| 250 | 243 249 | eqtr4d |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( P + 1 ) = ( # ` ( A u. ran F ) ) ) | 
						
							| 251 | 58 250 | breqtrd |  |-  ( ( ph /\ ( A i^i ran F ) = (/) ) -> P < ( # ` ( A u. ran F ) ) ) | 
						
							| 252 | 251 | ex |  |-  ( ph -> ( ( A i^i ran F ) = (/) -> P < ( # ` ( A u. ran F ) ) ) ) | 
						
							| 253 | 252 | necon3bd |  |-  ( ph -> ( -. P < ( # ` ( A u. ran F ) ) -> ( A i^i ran F ) =/= (/) ) ) | 
						
							| 254 | 56 253 | mpd |  |-  ( ph -> ( A i^i ran F ) =/= (/) ) |