Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
2 |
|
4sq.2 |
|- ( ph -> N e. NN ) |
3 |
|
4sq.3 |
|- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
4 |
|
4sq.4 |
|- ( ph -> P e. Prime ) |
5 |
|
4sqlem11.5 |
|- A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
6 |
|
4sqlem11.6 |
|- F = ( v e. A |-> ( ( P - 1 ) - v ) ) |
7 |
|
fzfid |
|- ( ph -> ( 0 ... ( P - 1 ) ) e. Fin ) |
8 |
|
elfzelz |
|- ( m e. ( 0 ... N ) -> m e. ZZ ) |
9 |
|
zsqcl |
|- ( m e. ZZ -> ( m ^ 2 ) e. ZZ ) |
10 |
8 9
|
syl |
|- ( m e. ( 0 ... N ) -> ( m ^ 2 ) e. ZZ ) |
11 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
12 |
4 11
|
syl |
|- ( ph -> P e. NN ) |
13 |
|
zmodfz |
|- ( ( ( m ^ 2 ) e. ZZ /\ P e. NN ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
14 |
10 12 13
|
syl2anr |
|- ( ( ph /\ m e. ( 0 ... N ) ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) |
15 |
|
eleq1a |
|- ( ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) -> ( u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
16 |
14 15
|
syl |
|- ( ( ph /\ m e. ( 0 ... N ) ) -> ( u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
17 |
16
|
rexlimdva |
|- ( ph -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) -> u e. ( 0 ... ( P - 1 ) ) ) ) |
18 |
17
|
abssdv |
|- ( ph -> { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } C_ ( 0 ... ( P - 1 ) ) ) |
19 |
5 18
|
eqsstrid |
|- ( ph -> A C_ ( 0 ... ( P - 1 ) ) ) |
20 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
21 |
4 20
|
syl |
|- ( ph -> P e. ZZ ) |
22 |
|
peano2zm |
|- ( P e. ZZ -> ( P - 1 ) e. ZZ ) |
23 |
21 22
|
syl |
|- ( ph -> ( P - 1 ) e. ZZ ) |
24 |
23
|
zcnd |
|- ( ph -> ( P - 1 ) e. CC ) |
25 |
24
|
addid2d |
|- ( ph -> ( 0 + ( P - 1 ) ) = ( P - 1 ) ) |
26 |
25
|
oveq1d |
|- ( ph -> ( ( 0 + ( P - 1 ) ) - v ) = ( ( P - 1 ) - v ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ v e. A ) -> ( ( 0 + ( P - 1 ) ) - v ) = ( ( P - 1 ) - v ) ) |
28 |
19
|
sselda |
|- ( ( ph /\ v e. A ) -> v e. ( 0 ... ( P - 1 ) ) ) |
29 |
|
fzrev3i |
|- ( v e. ( 0 ... ( P - 1 ) ) -> ( ( 0 + ( P - 1 ) ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
30 |
28 29
|
syl |
|- ( ( ph /\ v e. A ) -> ( ( 0 + ( P - 1 ) ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
31 |
27 30
|
eqeltrrd |
|- ( ( ph /\ v e. A ) -> ( ( P - 1 ) - v ) e. ( 0 ... ( P - 1 ) ) ) |
32 |
31 6
|
fmptd |
|- ( ph -> F : A --> ( 0 ... ( P - 1 ) ) ) |
33 |
32
|
frnd |
|- ( ph -> ran F C_ ( 0 ... ( P - 1 ) ) ) |
34 |
19 33
|
unssd |
|- ( ph -> ( A u. ran F ) C_ ( 0 ... ( P - 1 ) ) ) |
35 |
7 34
|
ssfid |
|- ( ph -> ( A u. ran F ) e. Fin ) |
36 |
|
hashcl |
|- ( ( A u. ran F ) e. Fin -> ( # ` ( A u. ran F ) ) e. NN0 ) |
37 |
35 36
|
syl |
|- ( ph -> ( # ` ( A u. ran F ) ) e. NN0 ) |
38 |
37
|
nn0red |
|- ( ph -> ( # ` ( A u. ran F ) ) e. RR ) |
39 |
21
|
zred |
|- ( ph -> P e. RR ) |
40 |
|
ssdomg |
|- ( ( 0 ... ( P - 1 ) ) e. Fin -> ( ( A u. ran F ) C_ ( 0 ... ( P - 1 ) ) -> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
41 |
7 34 40
|
sylc |
|- ( ph -> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) |
42 |
|
hashdom |
|- ( ( ( A u. ran F ) e. Fin /\ ( 0 ... ( P - 1 ) ) e. Fin ) -> ( ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) <-> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
43 |
35 7 42
|
syl2anc |
|- ( ph -> ( ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) <-> ( A u. ran F ) ~<_ ( 0 ... ( P - 1 ) ) ) ) |
44 |
41 43
|
mpbird |
|- ( ph -> ( # ` ( A u. ran F ) ) <_ ( # ` ( 0 ... ( P - 1 ) ) ) ) |
45 |
|
fz01en |
|- ( P e. ZZ -> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) |
46 |
21 45
|
syl |
|- ( ph -> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) |
47 |
|
fzfid |
|- ( ph -> ( 1 ... P ) e. Fin ) |
48 |
|
hashen |
|- ( ( ( 0 ... ( P - 1 ) ) e. Fin /\ ( 1 ... P ) e. Fin ) -> ( ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) <-> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) ) |
49 |
7 47 48
|
syl2anc |
|- ( ph -> ( ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) <-> ( 0 ... ( P - 1 ) ) ~~ ( 1 ... P ) ) ) |
50 |
46 49
|
mpbird |
|- ( ph -> ( # ` ( 0 ... ( P - 1 ) ) ) = ( # ` ( 1 ... P ) ) ) |
51 |
12
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
52 |
|
hashfz1 |
|- ( P e. NN0 -> ( # ` ( 1 ... P ) ) = P ) |
53 |
51 52
|
syl |
|- ( ph -> ( # ` ( 1 ... P ) ) = P ) |
54 |
50 53
|
eqtrd |
|- ( ph -> ( # ` ( 0 ... ( P - 1 ) ) ) = P ) |
55 |
44 54
|
breqtrd |
|- ( ph -> ( # ` ( A u. ran F ) ) <_ P ) |
56 |
38 39 55
|
lensymd |
|- ( ph -> -. P < ( # ` ( A u. ran F ) ) ) |
57 |
39
|
adantr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P e. RR ) |
58 |
57
|
ltp1d |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P < ( P + 1 ) ) |
59 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
60 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
61 |
59 59 60 60
|
add4d |
|- ( ph -> ( ( N + N ) + ( 1 + 1 ) ) = ( ( N + 1 ) + ( N + 1 ) ) ) |
62 |
3
|
oveq1d |
|- ( ph -> ( P + 1 ) = ( ( ( 2 x. N ) + 1 ) + 1 ) ) |
63 |
|
2cn |
|- 2 e. CC |
64 |
|
mulcl |
|- ( ( 2 e. CC /\ N e. CC ) -> ( 2 x. N ) e. CC ) |
65 |
63 59 64
|
sylancr |
|- ( ph -> ( 2 x. N ) e. CC ) |
66 |
65 60 60
|
addassd |
|- ( ph -> ( ( ( 2 x. N ) + 1 ) + 1 ) = ( ( 2 x. N ) + ( 1 + 1 ) ) ) |
67 |
59
|
2timesd |
|- ( ph -> ( 2 x. N ) = ( N + N ) ) |
68 |
67
|
oveq1d |
|- ( ph -> ( ( 2 x. N ) + ( 1 + 1 ) ) = ( ( N + N ) + ( 1 + 1 ) ) ) |
69 |
62 66 68
|
3eqtrd |
|- ( ph -> ( P + 1 ) = ( ( N + N ) + ( 1 + 1 ) ) ) |
70 |
14
|
ex |
|- ( ph -> ( m e. ( 0 ... N ) -> ( ( m ^ 2 ) mod P ) e. ( 0 ... ( P - 1 ) ) ) ) |
71 |
12
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. NN ) |
72 |
8
|
ad2antrl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. ZZ ) |
73 |
72 9
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m ^ 2 ) e. ZZ ) |
74 |
|
elfzelz |
|- ( u e. ( 0 ... N ) -> u e. ZZ ) |
75 |
74
|
ad2antll |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. ZZ ) |
76 |
|
zsqcl |
|- ( u e. ZZ -> ( u ^ 2 ) e. ZZ ) |
77 |
75 76
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( u ^ 2 ) e. ZZ ) |
78 |
|
moddvds |
|- ( ( P e. NN /\ ( m ^ 2 ) e. ZZ /\ ( u ^ 2 ) e. ZZ ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> P || ( ( m ^ 2 ) - ( u ^ 2 ) ) ) ) |
79 |
71 73 77 78
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> P || ( ( m ^ 2 ) - ( u ^ 2 ) ) ) ) |
80 |
72
|
zcnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. CC ) |
81 |
75
|
zcnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. CC ) |
82 |
|
subsq |
|- ( ( m e. CC /\ u e. CC ) -> ( ( m ^ 2 ) - ( u ^ 2 ) ) = ( ( m + u ) x. ( m - u ) ) ) |
83 |
80 81 82
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m ^ 2 ) - ( u ^ 2 ) ) = ( ( m + u ) x. ( m - u ) ) ) |
84 |
83
|
breq2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( ( m ^ 2 ) - ( u ^ 2 ) ) <-> P || ( ( m + u ) x. ( m - u ) ) ) ) |
85 |
4
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. Prime ) |
86 |
72 75
|
zaddcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) e. ZZ ) |
87 |
72 75
|
zsubcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - u ) e. ZZ ) |
88 |
|
euclemma |
|- ( ( P e. Prime /\ ( m + u ) e. ZZ /\ ( m - u ) e. ZZ ) -> ( P || ( ( m + u ) x. ( m - u ) ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
89 |
85 86 87 88
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( ( m + u ) x. ( m - u ) ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
90 |
79 84 89
|
3bitrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> ( P || ( m + u ) \/ P || ( m - u ) ) ) ) |
91 |
86
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) e. RR ) |
92 |
|
2re |
|- 2 e. RR |
93 |
2
|
nnred |
|- ( ph -> N e. RR ) |
94 |
|
remulcl |
|- ( ( 2 e. RR /\ N e. RR ) -> ( 2 x. N ) e. RR ) |
95 |
92 93 94
|
sylancr |
|- ( ph -> ( 2 x. N ) e. RR ) |
96 |
95
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) e. RR ) |
97 |
85 20
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. ZZ ) |
98 |
97
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> P e. RR ) |
99 |
72
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m e. RR ) |
100 |
75
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u e. RR ) |
101 |
93
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> N e. RR ) |
102 |
|
elfzle2 |
|- ( m e. ( 0 ... N ) -> m <_ N ) |
103 |
102
|
ad2antrl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> m <_ N ) |
104 |
|
elfzle2 |
|- ( u e. ( 0 ... N ) -> u <_ N ) |
105 |
104
|
ad2antll |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> u <_ N ) |
106 |
99 100 101 101 103 105
|
le2addd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) <_ ( N + N ) ) |
107 |
59
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> N e. CC ) |
108 |
107
|
2timesd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) = ( N + N ) ) |
109 |
106 108
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) <_ ( 2 x. N ) ) |
110 |
95
|
ltp1d |
|- ( ph -> ( 2 x. N ) < ( ( 2 x. N ) + 1 ) ) |
111 |
110 3
|
breqtrrd |
|- ( ph -> ( 2 x. N ) < P ) |
112 |
111
|
adantr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( 2 x. N ) < P ) |
113 |
91 96 98 109 112
|
lelttrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m + u ) < P ) |
114 |
91 98
|
ltnled |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m + u ) < P <-> -. P <_ ( m + u ) ) ) |
115 |
113 114
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> -. P <_ ( m + u ) ) |
116 |
115
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P <_ ( m + u ) ) |
117 |
21
|
ad2antrr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> P e. ZZ ) |
118 |
86
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. ZZ ) |
119 |
|
1red |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 e. RR ) |
120 |
|
nn0abscl |
|- ( ( m - u ) e. ZZ -> ( abs ` ( m - u ) ) e. NN0 ) |
121 |
87 120
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) e. NN0 ) |
122 |
121
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) e. RR ) |
123 |
122
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. RR ) |
124 |
118
|
zred |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. RR ) |
125 |
121
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. NN0 ) |
126 |
125
|
nn0zd |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. ZZ ) |
127 |
87
|
zcnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - u ) e. CC ) |
128 |
127
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m - u ) e. CC ) |
129 |
80 81
|
subeq0ad |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m - u ) = 0 <-> m = u ) ) |
130 |
129
|
necon3bid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( m - u ) =/= 0 <-> m =/= u ) ) |
131 |
130
|
biimpar |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m - u ) =/= 0 ) |
132 |
128 131
|
absrpcld |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. RR+ ) |
133 |
132
|
rpgt0d |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 0 < ( abs ` ( m - u ) ) ) |
134 |
|
elnnz |
|- ( ( abs ` ( m - u ) ) e. NN <-> ( ( abs ` ( m - u ) ) e. ZZ /\ 0 < ( abs ` ( m - u ) ) ) ) |
135 |
126 133 134
|
sylanbrc |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) e. NN ) |
136 |
135
|
nnge1d |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 <_ ( abs ` ( m - u ) ) ) |
137 |
|
0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 e. CC ) |
138 |
80 81 137
|
abs3difd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) <_ ( ( abs ` ( m - 0 ) ) + ( abs ` ( 0 - u ) ) ) ) |
139 |
80
|
subid1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m - 0 ) = m ) |
140 |
139
|
fveq2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - 0 ) ) = ( abs ` m ) ) |
141 |
|
elfzle1 |
|- ( m e. ( 0 ... N ) -> 0 <_ m ) |
142 |
141
|
ad2antrl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 <_ m ) |
143 |
99 142
|
absidd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` m ) = m ) |
144 |
140 143
|
eqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - 0 ) ) = m ) |
145 |
|
0cn |
|- 0 e. CC |
146 |
|
abssub |
|- ( ( 0 e. CC /\ u e. CC ) -> ( abs ` ( 0 - u ) ) = ( abs ` ( u - 0 ) ) ) |
147 |
145 81 146
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( 0 - u ) ) = ( abs ` ( u - 0 ) ) ) |
148 |
81
|
subid1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( u - 0 ) = u ) |
149 |
148
|
fveq2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( u - 0 ) ) = ( abs ` u ) ) |
150 |
|
elfzle1 |
|- ( u e. ( 0 ... N ) -> 0 <_ u ) |
151 |
150
|
ad2antll |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> 0 <_ u ) |
152 |
100 151
|
absidd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` u ) = u ) |
153 |
147 149 152
|
3eqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( 0 - u ) ) = u ) |
154 |
144 153
|
oveq12d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( abs ` ( m - 0 ) ) + ( abs ` ( 0 - u ) ) ) = ( m + u ) ) |
155 |
138 154
|
breqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( abs ` ( m - u ) ) <_ ( m + u ) ) |
156 |
155
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( abs ` ( m - u ) ) <_ ( m + u ) ) |
157 |
119 123 124 136 156
|
letrd |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> 1 <_ ( m + u ) ) |
158 |
|
elnnz1 |
|- ( ( m + u ) e. NN <-> ( ( m + u ) e. ZZ /\ 1 <_ ( m + u ) ) ) |
159 |
118 157 158
|
sylanbrc |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( m + u ) e. NN ) |
160 |
|
dvdsle |
|- ( ( P e. ZZ /\ ( m + u ) e. NN ) -> ( P || ( m + u ) -> P <_ ( m + u ) ) ) |
161 |
117 159 160
|
syl2anc |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( P || ( m + u ) -> P <_ ( m + u ) ) ) |
162 |
116 161
|
mtod |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P || ( m + u ) ) |
163 |
162
|
ex |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m =/= u -> -. P || ( m + u ) ) ) |
164 |
163
|
necon4ad |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m + u ) -> m = u ) ) |
165 |
|
dvdsabsb |
|- ( ( P e. ZZ /\ ( m - u ) e. ZZ ) -> ( P || ( m - u ) <-> P || ( abs ` ( m - u ) ) ) ) |
166 |
97 87 165
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m - u ) <-> P || ( abs ` ( m - u ) ) ) ) |
167 |
|
letr |
|- ( ( P e. RR /\ ( abs ` ( m - u ) ) e. RR /\ ( m + u ) e. RR ) -> ( ( P <_ ( abs ` ( m - u ) ) /\ ( abs ` ( m - u ) ) <_ ( m + u ) ) -> P <_ ( m + u ) ) ) |
168 |
98 122 91 167
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( P <_ ( abs ` ( m - u ) ) /\ ( abs ` ( m - u ) ) <_ ( m + u ) ) -> P <_ ( m + u ) ) ) |
169 |
155 168
|
mpan2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P <_ ( abs ` ( m - u ) ) -> P <_ ( m + u ) ) ) |
170 |
115 169
|
mtod |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> -. P <_ ( abs ` ( m - u ) ) ) |
171 |
170
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P <_ ( abs ` ( m - u ) ) ) |
172 |
97
|
adantr |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> P e. ZZ ) |
173 |
|
dvdsle |
|- ( ( P e. ZZ /\ ( abs ` ( m - u ) ) e. NN ) -> ( P || ( abs ` ( m - u ) ) -> P <_ ( abs ` ( m - u ) ) ) ) |
174 |
172 135 173
|
syl2anc |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> ( P || ( abs ` ( m - u ) ) -> P <_ ( abs ` ( m - u ) ) ) ) |
175 |
171 174
|
mtod |
|- ( ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) /\ m =/= u ) -> -. P || ( abs ` ( m - u ) ) ) |
176 |
175
|
ex |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( m =/= u -> -. P || ( abs ` ( m - u ) ) ) ) |
177 |
176
|
necon4ad |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( abs ` ( m - u ) ) -> m = u ) ) |
178 |
166 177
|
sylbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( P || ( m - u ) -> m = u ) ) |
179 |
164 178
|
jaod |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( P || ( m + u ) \/ P || ( m - u ) ) -> m = u ) ) |
180 |
90 179
|
sylbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) -> m = u ) ) |
181 |
|
oveq1 |
|- ( m = u -> ( m ^ 2 ) = ( u ^ 2 ) ) |
182 |
181
|
oveq1d |
|- ( m = u -> ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) ) |
183 |
180 182
|
impbid1 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> m = u ) ) |
184 |
183
|
ex |
|- ( ph -> ( ( m e. ( 0 ... N ) /\ u e. ( 0 ... N ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( u ^ 2 ) mod P ) <-> m = u ) ) ) |
185 |
70 184
|
dom2lem |
|- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-> ( 0 ... ( P - 1 ) ) ) |
186 |
|
f1f1orn |
|- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-> ( 0 ... ( P - 1 ) ) -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
187 |
185 186
|
syl |
|- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
188 |
|
eqid |
|- ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) = ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) |
189 |
188
|
rnmpt |
|- ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
190 |
5 189
|
eqtr4i |
|- A = ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) |
191 |
|
f1oeq3 |
|- ( A = ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) -> ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A <-> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) ) |
192 |
190 191
|
ax-mp |
|- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A <-> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> ran ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) ) |
193 |
187 192
|
sylibr |
|- ( ph -> ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A ) |
194 |
|
ovex |
|- ( 0 ... N ) e. _V |
195 |
194
|
f1oen |
|- ( ( m e. ( 0 ... N ) |-> ( ( m ^ 2 ) mod P ) ) : ( 0 ... N ) -1-1-onto-> A -> ( 0 ... N ) ~~ A ) |
196 |
193 195
|
syl |
|- ( ph -> ( 0 ... N ) ~~ A ) |
197 |
196
|
ensymd |
|- ( ph -> A ~~ ( 0 ... N ) ) |
198 |
|
ax-1cn |
|- 1 e. CC |
199 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
200 |
59 198 199
|
sylancl |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
201 |
200
|
oveq2d |
|- ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
202 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
203 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
204 |
202 203
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
205 |
204
|
nn0zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
206 |
|
fz01en |
|- ( ( N + 1 ) e. ZZ -> ( 0 ... ( ( N + 1 ) - 1 ) ) ~~ ( 1 ... ( N + 1 ) ) ) |
207 |
205 206
|
syl |
|- ( ph -> ( 0 ... ( ( N + 1 ) - 1 ) ) ~~ ( 1 ... ( N + 1 ) ) ) |
208 |
201 207
|
eqbrtrrd |
|- ( ph -> ( 0 ... N ) ~~ ( 1 ... ( N + 1 ) ) ) |
209 |
|
entr |
|- ( ( A ~~ ( 0 ... N ) /\ ( 0 ... N ) ~~ ( 1 ... ( N + 1 ) ) ) -> A ~~ ( 1 ... ( N + 1 ) ) ) |
210 |
197 208 209
|
syl2anc |
|- ( ph -> A ~~ ( 1 ... ( N + 1 ) ) ) |
211 |
7 19
|
ssfid |
|- ( ph -> A e. Fin ) |
212 |
|
fzfid |
|- ( ph -> ( 1 ... ( N + 1 ) ) e. Fin ) |
213 |
|
hashen |
|- ( ( A e. Fin /\ ( 1 ... ( N + 1 ) ) e. Fin ) -> ( ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) <-> A ~~ ( 1 ... ( N + 1 ) ) ) ) |
214 |
211 212 213
|
syl2anc |
|- ( ph -> ( ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) <-> A ~~ ( 1 ... ( N + 1 ) ) ) ) |
215 |
210 214
|
mpbird |
|- ( ph -> ( # ` A ) = ( # ` ( 1 ... ( N + 1 ) ) ) ) |
216 |
|
hashfz1 |
|- ( ( N + 1 ) e. NN0 -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
217 |
204 216
|
syl |
|- ( ph -> ( # ` ( 1 ... ( N + 1 ) ) ) = ( N + 1 ) ) |
218 |
215 217
|
eqtrd |
|- ( ph -> ( # ` A ) = ( N + 1 ) ) |
219 |
31
|
ex |
|- ( ph -> ( v e. A -> ( ( P - 1 ) - v ) e. ( 0 ... ( P - 1 ) ) ) ) |
220 |
24
|
adantr |
|- ( ( ph /\ ( v e. A /\ k e. A ) ) -> ( P - 1 ) e. CC ) |
221 |
|
fzssuz |
|- ( 0 ... ( P - 1 ) ) C_ ( ZZ>= ` 0 ) |
222 |
|
uzssz |
|- ( ZZ>= ` 0 ) C_ ZZ |
223 |
|
zsscn |
|- ZZ C_ CC |
224 |
222 223
|
sstri |
|- ( ZZ>= ` 0 ) C_ CC |
225 |
221 224
|
sstri |
|- ( 0 ... ( P - 1 ) ) C_ CC |
226 |
19 225
|
sstrdi |
|- ( ph -> A C_ CC ) |
227 |
226
|
sselda |
|- ( ( ph /\ v e. A ) -> v e. CC ) |
228 |
227
|
adantrr |
|- ( ( ph /\ ( v e. A /\ k e. A ) ) -> v e. CC ) |
229 |
226
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. CC ) |
230 |
229
|
adantrl |
|- ( ( ph /\ ( v e. A /\ k e. A ) ) -> k e. CC ) |
231 |
220 228 230
|
subcanad |
|- ( ( ph /\ ( v e. A /\ k e. A ) ) -> ( ( ( P - 1 ) - v ) = ( ( P - 1 ) - k ) <-> v = k ) ) |
232 |
231
|
ex |
|- ( ph -> ( ( v e. A /\ k e. A ) -> ( ( ( P - 1 ) - v ) = ( ( P - 1 ) - k ) <-> v = k ) ) ) |
233 |
219 232
|
dom2lem |
|- ( ph -> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
234 |
|
f1eq1 |
|- ( F = ( v e. A |-> ( ( P - 1 ) - v ) ) -> ( F : A -1-1-> ( 0 ... ( P - 1 ) ) <-> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) ) |
235 |
6 234
|
ax-mp |
|- ( F : A -1-1-> ( 0 ... ( P - 1 ) ) <-> ( v e. A |-> ( ( P - 1 ) - v ) ) : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
236 |
233 235
|
sylibr |
|- ( ph -> F : A -1-1-> ( 0 ... ( P - 1 ) ) ) |
237 |
|
f1f1orn |
|- ( F : A -1-1-> ( 0 ... ( P - 1 ) ) -> F : A -1-1-onto-> ran F ) |
238 |
236 237
|
syl |
|- ( ph -> F : A -1-1-onto-> ran F ) |
239 |
211 238
|
hasheqf1od |
|- ( ph -> ( # ` A ) = ( # ` ran F ) ) |
240 |
239 218
|
eqtr3d |
|- ( ph -> ( # ` ran F ) = ( N + 1 ) ) |
241 |
218 240
|
oveq12d |
|- ( ph -> ( ( # ` A ) + ( # ` ran F ) ) = ( ( N + 1 ) + ( N + 1 ) ) ) |
242 |
61 69 241
|
3eqtr4d |
|- ( ph -> ( P + 1 ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
243 |
242
|
adantr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( P + 1 ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
244 |
211
|
adantr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> A e. Fin ) |
245 |
7 33
|
ssfid |
|- ( ph -> ran F e. Fin ) |
246 |
245
|
adantr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ran F e. Fin ) |
247 |
|
simpr |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( A i^i ran F ) = (/) ) |
248 |
|
hashun |
|- ( ( A e. Fin /\ ran F e. Fin /\ ( A i^i ran F ) = (/) ) -> ( # ` ( A u. ran F ) ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
249 |
244 246 247 248
|
syl3anc |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( # ` ( A u. ran F ) ) = ( ( # ` A ) + ( # ` ran F ) ) ) |
250 |
243 249
|
eqtr4d |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> ( P + 1 ) = ( # ` ( A u. ran F ) ) ) |
251 |
58 250
|
breqtrd |
|- ( ( ph /\ ( A i^i ran F ) = (/) ) -> P < ( # ` ( A u. ran F ) ) ) |
252 |
251
|
ex |
|- ( ph -> ( ( A i^i ran F ) = (/) -> P < ( # ` ( A u. ran F ) ) ) ) |
253 |
252
|
necon3bd |
|- ( ph -> ( -. P < ( # ` ( A u. ran F ) ) -> ( A i^i ran F ) =/= (/) ) ) |
254 |
56 253
|
mpd |
|- ( ph -> ( A i^i ran F ) =/= (/) ) |