Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
2 |
|
4sq.2 |
|- ( ph -> N e. NN ) |
3 |
|
4sq.3 |
|- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
4 |
|
4sq.4 |
|- ( ph -> P e. Prime ) |
5 |
|
4sqlem11.5 |
|- A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
6 |
|
4sqlem11.6 |
|- F = ( v e. A |-> ( ( P - 1 ) - v ) ) |
7 |
1 2 3 4 5 6
|
4sqlem11 |
|- ( ph -> ( A i^i ran F ) =/= (/) ) |
8 |
|
n0 |
|- ( ( A i^i ran F ) =/= (/) <-> E. j j e. ( A i^i ran F ) ) |
9 |
7 8
|
sylib |
|- ( ph -> E. j j e. ( A i^i ran F ) ) |
10 |
|
vex |
|- j e. _V |
11 |
|
eqeq1 |
|- ( u = j -> ( u = ( ( m ^ 2 ) mod P ) <-> j = ( ( m ^ 2 ) mod P ) ) ) |
12 |
11
|
rexbidv |
|- ( u = j -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) ) ) |
13 |
10 12 5
|
elab2 |
|- ( j e. A <-> E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) ) |
14 |
|
abid |
|- ( j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } <-> E. v e. A j = ( ( P - 1 ) - v ) ) |
15 |
5
|
rexeqi |
|- ( E. v e. A j = ( ( P - 1 ) - v ) <-> E. v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } j = ( ( P - 1 ) - v ) ) |
16 |
|
oveq1 |
|- ( m = n -> ( m ^ 2 ) = ( n ^ 2 ) ) |
17 |
16
|
oveq1d |
|- ( m = n -> ( ( m ^ 2 ) mod P ) = ( ( n ^ 2 ) mod P ) ) |
18 |
17
|
eqeq2d |
|- ( m = n -> ( u = ( ( m ^ 2 ) mod P ) <-> u = ( ( n ^ 2 ) mod P ) ) ) |
19 |
18
|
cbvrexvw |
|- ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) u = ( ( n ^ 2 ) mod P ) ) |
20 |
|
eqeq1 |
|- ( u = v -> ( u = ( ( n ^ 2 ) mod P ) <-> v = ( ( n ^ 2 ) mod P ) ) ) |
21 |
20
|
rexbidv |
|- ( u = v -> ( E. n e. ( 0 ... N ) u = ( ( n ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) ) ) |
22 |
19 21
|
syl5bb |
|- ( u = v -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) ) ) |
23 |
22
|
rexab |
|- ( E. v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } j = ( ( P - 1 ) - v ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
24 |
14 15 23
|
3bitri |
|- ( j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
25 |
6
|
rnmpt |
|- ran F = { j | E. v e. A j = ( ( P - 1 ) - v ) } |
26 |
25
|
eleq2i |
|- ( j e. ran F <-> j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } ) |
27 |
|
rexcom4 |
|- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
28 |
|
r19.41v |
|- ( E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
29 |
28
|
exbii |
|- ( E. v E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
30 |
27 29
|
bitri |
|- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
31 |
24 26 30
|
3bitr4i |
|- ( j e. ran F <-> E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
32 |
|
ovex |
|- ( ( n ^ 2 ) mod P ) e. _V |
33 |
|
oveq2 |
|- ( v = ( ( n ^ 2 ) mod P ) -> ( ( P - 1 ) - v ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
34 |
33
|
eqeq2d |
|- ( v = ( ( n ^ 2 ) mod P ) -> ( j = ( ( P - 1 ) - v ) <-> j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
35 |
32 34
|
ceqsexv |
|- ( E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
36 |
35
|
rexbii |
|- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
37 |
31 36
|
bitri |
|- ( j e. ran F <-> E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
38 |
13 37
|
anbi12i |
|- ( ( j e. A /\ j e. ran F ) <-> ( E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) /\ E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
39 |
|
elin |
|- ( j e. ( A i^i ran F ) <-> ( j e. A /\ j e. ran F ) ) |
40 |
|
reeanv |
|- ( E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) <-> ( E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) /\ E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
41 |
38 39 40
|
3bitr4i |
|- ( j e. ( A i^i ran F ) <-> E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
42 |
|
eqtr2 |
|- ( ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
43 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. Prime ) |
44 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
45 |
43 44
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. NN ) |
46 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
47 |
45 46
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. NN0 ) |
48 |
47
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. RR ) |
49 |
45
|
nnrpd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. RR+ ) |
50 |
47
|
nn0ge0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ ( P - 1 ) ) |
51 |
45
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. RR ) |
52 |
51
|
ltm1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) < P ) |
53 |
|
modid |
|- ( ( ( ( P - 1 ) e. RR /\ P e. RR+ ) /\ ( 0 <_ ( P - 1 ) /\ ( P - 1 ) < P ) ) -> ( ( P - 1 ) mod P ) = ( P - 1 ) ) |
54 |
48 49 50 52 53
|
syl22anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( P - 1 ) mod P ) = ( P - 1 ) ) |
55 |
54
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
56 |
|
simp2r |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. ( 0 ... N ) ) |
57 |
56
|
elfzelzd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. ZZ ) |
58 |
|
zsqcl2 |
|- ( n e. ZZ -> ( n ^ 2 ) e. NN0 ) |
59 |
57 58
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. NN0 ) |
60 |
59
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. RR ) |
61 |
|
modlt |
|- ( ( ( n ^ 2 ) e. RR /\ P e. RR+ ) -> ( ( n ^ 2 ) mod P ) < P ) |
62 |
60 49 61
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) < P ) |
63 |
|
zsqcl |
|- ( n e. ZZ -> ( n ^ 2 ) e. ZZ ) |
64 |
57 63
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. ZZ ) |
65 |
64 45
|
zmodcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) e. NN0 ) |
66 |
65
|
nn0zd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) e. ZZ ) |
67 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
68 |
43 67
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. ZZ ) |
69 |
|
zltlem1 |
|- ( ( ( ( n ^ 2 ) mod P ) e. ZZ /\ P e. ZZ ) -> ( ( ( n ^ 2 ) mod P ) < P <-> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) ) |
70 |
66 68 69
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( n ^ 2 ) mod P ) < P <-> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) ) |
71 |
62 70
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) |
72 |
71 54
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) ) |
73 |
|
modsubdir |
|- ( ( ( P - 1 ) e. RR /\ ( n ^ 2 ) e. RR /\ P e. RR+ ) -> ( ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) <-> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) ) |
74 |
48 60 49 73
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) <-> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) ) |
75 |
72 74
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) |
76 |
|
simp3 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
77 |
55 75 76
|
3eqtr4rd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) ) |
78 |
|
simp2l |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. ( 0 ... N ) ) |
79 |
78
|
elfzelzd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. ZZ ) |
80 |
|
zsqcl |
|- ( m e. ZZ -> ( m ^ 2 ) e. ZZ ) |
81 |
79 80
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. ZZ ) |
82 |
47
|
nn0zd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. ZZ ) |
83 |
82 64
|
zsubcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( P - 1 ) - ( n ^ 2 ) ) e. ZZ ) |
84 |
|
moddvds |
|- ( ( P e. NN /\ ( m ^ 2 ) e. ZZ /\ ( ( P - 1 ) - ( n ^ 2 ) ) e. ZZ ) -> ( ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) <-> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) ) |
85 |
45 81 83 84
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) <-> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) ) |
86 |
77 85
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) |
87 |
|
zsqcl2 |
|- ( m e. ZZ -> ( m ^ 2 ) e. NN0 ) |
88 |
79 87
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. NN0 ) |
89 |
88
|
nn0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. CC ) |
90 |
47
|
nn0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. CC ) |
91 |
59
|
nn0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. CC ) |
92 |
89 90 91
|
subsub3d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) - ( P - 1 ) ) ) |
93 |
88 59
|
nn0addcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. NN0 ) |
94 |
93
|
nn0cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. CC ) |
95 |
45
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. CC ) |
96 |
|
1cnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 e. CC ) |
97 |
94 95 96
|
subsub3d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) - ( P - 1 ) ) = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
98 |
92 97
|
eqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
99 |
86 98
|
breqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
100 |
|
nn0p1nn |
|- ( ( ( m ^ 2 ) + ( n ^ 2 ) ) e. NN0 -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN ) |
101 |
93 100
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN ) |
102 |
101
|
nnzd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) |
103 |
|
dvdssubr |
|- ( ( P e. ZZ /\ ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) ) |
104 |
68 102 103
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) ) |
105 |
99 104
|
mpbird |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
106 |
45
|
nnne0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P =/= 0 ) |
107 |
|
dvdsval2 |
|- ( ( P e. ZZ /\ P =/= 0 /\ ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) ) |
108 |
68 106 102 107
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) ) |
109 |
105 108
|
mpbid |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) |
110 |
|
nnrp |
|- ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR+ ) |
111 |
|
nnrp |
|- ( P e. NN -> P e. RR+ ) |
112 |
|
rpdivcl |
|- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR+ /\ P e. RR+ ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
113 |
110 111 112
|
syl2an |
|- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN /\ P e. NN ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
114 |
101 45 113
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
115 |
114
|
rpgt0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) |
116 |
|
elnnz |
|- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. NN <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 0 < ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) ) |
117 |
109 115 116
|
sylanbrc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. NN ) |
118 |
117
|
nnge1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) |
119 |
93
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. RR ) |
120 |
|
2nn |
|- 2 e. NN |
121 |
2
|
3ad2ant1 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. NN ) |
122 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
123 |
120 121 122
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. NN ) |
124 |
123
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. RR ) |
125 |
124
|
resqcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) e. RR ) |
126 |
|
nnmulcl |
|- ( ( 2 e. NN /\ ( 2 x. N ) e. NN ) -> ( 2 x. ( 2 x. N ) ) e. NN ) |
127 |
120 123 126
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. NN ) |
128 |
127
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. RR ) |
129 |
125 128
|
readdcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) e. RR ) |
130 |
|
1red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 e. RR ) |
131 |
121
|
nnsqcld |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. NN ) |
132 |
|
nnmulcl |
|- ( ( 2 e. NN /\ ( N ^ 2 ) e. NN ) -> ( 2 x. ( N ^ 2 ) ) e. NN ) |
133 |
120 131 132
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) e. NN ) |
134 |
133
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) e. RR ) |
135 |
88
|
nn0red |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. RR ) |
136 |
131
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. RR ) |
137 |
79
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. RR ) |
138 |
|
elfzle1 |
|- ( m e. ( 0 ... N ) -> 0 <_ m ) |
139 |
78 138
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ m ) |
140 |
121
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. RR ) |
141 |
|
elfzle2 |
|- ( m e. ( 0 ... N ) -> m <_ N ) |
142 |
78 141
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m <_ N ) |
143 |
|
le2sq2 |
|- ( ( ( m e. RR /\ 0 <_ m ) /\ ( N e. RR /\ m <_ N ) ) -> ( m ^ 2 ) <_ ( N ^ 2 ) ) |
144 |
137 139 140 142 143
|
syl22anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) <_ ( N ^ 2 ) ) |
145 |
57
|
zred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. RR ) |
146 |
|
elfzle1 |
|- ( n e. ( 0 ... N ) -> 0 <_ n ) |
147 |
56 146
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ n ) |
148 |
|
elfzle2 |
|- ( n e. ( 0 ... N ) -> n <_ N ) |
149 |
56 148
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n <_ N ) |
150 |
|
le2sq2 |
|- ( ( ( n e. RR /\ 0 <_ n ) /\ ( N e. RR /\ n <_ N ) ) -> ( n ^ 2 ) <_ ( N ^ 2 ) ) |
151 |
145 147 140 149 150
|
syl22anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) <_ ( N ^ 2 ) ) |
152 |
135 60 136 136 144 151
|
le2addd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) <_ ( ( N ^ 2 ) + ( N ^ 2 ) ) ) |
153 |
131
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. CC ) |
154 |
153
|
2timesd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) = ( ( N ^ 2 ) + ( N ^ 2 ) ) ) |
155 |
152 154
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) <_ ( 2 x. ( N ^ 2 ) ) ) |
156 |
|
2lt4 |
|- 2 < 4 |
157 |
|
2re |
|- 2 e. RR |
158 |
157
|
a1i |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 2 e. RR ) |
159 |
|
4re |
|- 4 e. RR |
160 |
159
|
a1i |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 4 e. RR ) |
161 |
131
|
nngt0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < ( N ^ 2 ) ) |
162 |
|
ltmul1 |
|- ( ( 2 e. RR /\ 4 e. RR /\ ( ( N ^ 2 ) e. RR /\ 0 < ( N ^ 2 ) ) ) -> ( 2 < 4 <-> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) ) |
163 |
158 160 136 161 162
|
syl112anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 < 4 <-> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) ) |
164 |
156 163
|
mpbii |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) |
165 |
|
2cn |
|- 2 e. CC |
166 |
121
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. CC ) |
167 |
|
sqmul |
|- ( ( 2 e. CC /\ N e. CC ) -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
168 |
165 166 167
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
169 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
170 |
169
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) = ( 4 x. ( N ^ 2 ) ) |
171 |
168 170
|
eqtrdi |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) = ( 4 x. ( N ^ 2 ) ) ) |
172 |
164 171
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) < ( ( 2 x. N ) ^ 2 ) ) |
173 |
119 134 125 155 172
|
lelttrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) < ( ( 2 x. N ) ^ 2 ) ) |
174 |
127
|
nnrpd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. RR+ ) |
175 |
125 174
|
ltaddrpd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) < ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) ) |
176 |
119 125 129 173 175
|
lttrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) < ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) ) |
177 |
119 129 130 176
|
ltadd1dd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
178 |
3
|
3ad2ant1 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P = ( ( 2 x. N ) + 1 ) ) |
179 |
178
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P ^ 2 ) = ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) |
180 |
95
|
sqvald |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P ^ 2 ) = ( P x. P ) ) |
181 |
123
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. CC ) |
182 |
|
binom21 |
|- ( ( 2 x. N ) e. CC -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
183 |
181 182
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
184 |
179 180 183
|
3eqtr3d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P x. P ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
185 |
177 184
|
breqtrrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) |
186 |
101
|
nnred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR ) |
187 |
45
|
nngt0d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < P ) |
188 |
|
ltdivmul |
|- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR /\ P e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P <-> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) ) |
189 |
186 51 51 187 188
|
syl112anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P <-> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) ) |
190 |
185 189
|
mpbird |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) |
191 |
|
1z |
|- 1 e. ZZ |
192 |
|
elfzm11 |
|- ( ( 1 e. ZZ /\ P e. ZZ ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) /\ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) ) ) |
193 |
191 68 192
|
sylancr |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) /\ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) ) ) |
194 |
109 118 190 193
|
mpbir3and |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) ) |
195 |
|
gzreim |
|- ( ( m e. ZZ /\ n e. ZZ ) -> ( m + ( _i x. n ) ) e. Z[i] ) |
196 |
79 57 195
|
syl2anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m + ( _i x. n ) ) e. Z[i] ) |
197 |
|
gzcn |
|- ( ( m + ( _i x. n ) ) e. Z[i] -> ( m + ( _i x. n ) ) e. CC ) |
198 |
196 197
|
syl |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m + ( _i x. n ) ) e. CC ) |
199 |
198
|
absvalsq2d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) + ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) ) ) |
200 |
137 145
|
crred |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( Re ` ( m + ( _i x. n ) ) ) = m ) |
201 |
200
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( m ^ 2 ) ) |
202 |
137 145
|
crimd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( Im ` ( m + ( _i x. n ) ) ) = n ) |
203 |
202
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( n ^ 2 ) ) |
204 |
201 203
|
oveq12d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) + ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) |
205 |
199 204
|
eqtrd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) |
206 |
205
|
oveq1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
207 |
101
|
nncnd |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. CC ) |
208 |
207 95 106
|
divcan1d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
209 |
206 208
|
eqtr4d |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) |
210 |
|
oveq1 |
|- ( k = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) -> ( k x. P ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) |
211 |
210
|
eqeq2d |
|- ( k = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) -> ( ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) <-> ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) ) |
212 |
|
fveq2 |
|- ( u = ( m + ( _i x. n ) ) -> ( abs ` u ) = ( abs ` ( m + ( _i x. n ) ) ) ) |
213 |
212
|
oveq1d |
|- ( u = ( m + ( _i x. n ) ) -> ( ( abs ` u ) ^ 2 ) = ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) ) |
214 |
213
|
oveq1d |
|- ( u = ( m + ( _i x. n ) ) -> ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) ) |
215 |
214
|
eqeq1d |
|- ( u = ( m + ( _i x. n ) ) -> ( ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) <-> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) ) |
216 |
211 215
|
rspc2ev |
|- ( ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) /\ ( m + ( _i x. n ) ) e. Z[i] /\ ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
217 |
194 196 209 216
|
syl3anc |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
218 |
217
|
3expia |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
219 |
42 218
|
syl5 |
|- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) ) -> ( ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
220 |
219
|
rexlimdvva |
|- ( ph -> ( E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
221 |
41 220
|
syl5bi |
|- ( ph -> ( j e. ( A i^i ran F ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
222 |
221
|
exlimdv |
|- ( ph -> ( E. j j e. ( A i^i ran F ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
223 |
9 222
|
mpd |
|- ( ph -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |