| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
| 2 |
|
4sq.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
4sq.3 |
|- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
| 4 |
|
4sq.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
4sq.5 |
|- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
| 6 |
|
4sq.6 |
|- T = { i e. NN | ( i x. P ) e. S } |
| 7 |
|
4sq.7 |
|- M = inf ( T , RR , < ) |
| 8 |
|
eqid |
|- { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
| 9 |
|
eqid |
|- ( v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |-> ( ( P - 1 ) - v ) ) = ( v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |-> ( ( P - 1 ) - v ) ) |
| 10 |
1 2 3 4 8 9
|
4sqlem12 |
|- ( ph -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
| 11 |
|
simplrl |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k e. ( 1 ... ( P - 1 ) ) ) |
| 12 |
|
elfznn |
|- ( k e. ( 1 ... ( P - 1 ) ) -> k e. NN ) |
| 13 |
11 12
|
syl |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k e. NN ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
| 15 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 16 |
15
|
oveq1i |
|- ( ( abs ` 1 ) ^ 2 ) = ( 1 ^ 2 ) |
| 17 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 18 |
16 17
|
eqtri |
|- ( ( abs ` 1 ) ^ 2 ) = 1 |
| 19 |
18
|
oveq2i |
|- ( ( ( abs ` u ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) = ( ( ( abs ` u ) ^ 2 ) + 1 ) |
| 20 |
|
simplrr |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> u e. Z[i] ) |
| 21 |
|
1z |
|- 1 e. ZZ |
| 22 |
|
zgz |
|- ( 1 e. ZZ -> 1 e. Z[i] ) |
| 23 |
21 22
|
ax-mp |
|- 1 e. Z[i] |
| 24 |
1
|
4sqlem4a |
|- ( ( u e. Z[i] /\ 1 e. Z[i] ) -> ( ( ( abs ` u ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) e. S ) |
| 25 |
20 23 24
|
sylancl |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( ( ( abs ` u ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) e. S ) |
| 26 |
19 25
|
eqeltrrid |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( ( ( abs ` u ) ^ 2 ) + 1 ) e. S ) |
| 27 |
14 26
|
eqeltrrd |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( k x. P ) e. S ) |
| 28 |
|
oveq1 |
|- ( i = k -> ( i x. P ) = ( k x. P ) ) |
| 29 |
28
|
eleq1d |
|- ( i = k -> ( ( i x. P ) e. S <-> ( k x. P ) e. S ) ) |
| 30 |
29 6
|
elrab2 |
|- ( k e. T <-> ( k e. NN /\ ( k x. P ) e. S ) ) |
| 31 |
13 27 30
|
sylanbrc |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k e. T ) |
| 32 |
31
|
ne0d |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> T =/= (/) ) |
| 33 |
6
|
ssrab3 |
|- T C_ NN |
| 34 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 35 |
33 34
|
sseqtri |
|- T C_ ( ZZ>= ` 1 ) |
| 36 |
|
infssuzcl |
|- ( ( T C_ ( ZZ>= ` 1 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
| 37 |
35 32 36
|
sylancr |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> inf ( T , RR , < ) e. T ) |
| 38 |
7 37
|
eqeltrid |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M e. T ) |
| 39 |
33 38
|
sselid |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M e. NN ) |
| 40 |
39
|
nnred |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M e. RR ) |
| 41 |
13
|
nnred |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k e. RR ) |
| 42 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> P e. Prime ) |
| 43 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 44 |
42 43
|
syl |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> P e. NN ) |
| 45 |
44
|
nnred |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> P e. RR ) |
| 46 |
|
infssuzle |
|- ( ( T C_ ( ZZ>= ` 1 ) /\ k e. T ) -> inf ( T , RR , < ) <_ k ) |
| 47 |
35 31 46
|
sylancr |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> inf ( T , RR , < ) <_ k ) |
| 48 |
7 47
|
eqbrtrid |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M <_ k ) |
| 49 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 50 |
42 49
|
syl |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> P e. ZZ ) |
| 51 |
|
elfzm11 |
|- ( ( 1 e. ZZ /\ P e. ZZ ) -> ( k e. ( 1 ... ( P - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < P ) ) ) |
| 52 |
21 50 51
|
sylancr |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( k e. ( 1 ... ( P - 1 ) ) <-> ( k e. ZZ /\ 1 <_ k /\ k < P ) ) ) |
| 53 |
11 52
|
mpbid |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( k e. ZZ /\ 1 <_ k /\ k < P ) ) |
| 54 |
53
|
simp3d |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> k < P ) |
| 55 |
40 41 45 48 54
|
lelttrd |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> M < P ) |
| 56 |
32 55
|
jca |
|- ( ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) /\ ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) -> ( T =/= (/) /\ M < P ) ) |
| 57 |
56
|
ex |
|- ( ( ph /\ ( k e. ( 1 ... ( P - 1 ) ) /\ u e. Z[i] ) ) -> ( ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) -> ( T =/= (/) /\ M < P ) ) ) |
| 58 |
57
|
rexlimdvva |
|- ( ph -> ( E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) -> ( T =/= (/) /\ M < P ) ) ) |
| 59 |
10 58
|
mpd |
|- ( ph -> ( T =/= (/) /\ M < P ) ) |