Metamath Proof Explorer


Theorem 4sqlem17

Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses 4sq.1
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) }
4sq.2
|- ( ph -> N e. NN )
4sq.3
|- ( ph -> P = ( ( 2 x. N ) + 1 ) )
4sq.4
|- ( ph -> P e. Prime )
4sq.5
|- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S )
4sq.6
|- T = { i e. NN | ( i x. P ) e. S }
4sq.7
|- M = inf ( T , RR , < )
4sq.m
|- ( ph -> M e. ( ZZ>= ` 2 ) )
4sq.a
|- ( ph -> A e. ZZ )
4sq.b
|- ( ph -> B e. ZZ )
4sq.c
|- ( ph -> C e. ZZ )
4sq.d
|- ( ph -> D e. ZZ )
4sq.e
|- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) )
4sq.f
|- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) )
4sq.g
|- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) )
4sq.h
|- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) )
4sq.r
|- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M )
4sq.p
|- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) )
Assertion 4sqlem17
|- -. ph

Proof

Step Hyp Ref Expression
1 4sq.1
 |-  S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) }
2 4sq.2
 |-  ( ph -> N e. NN )
3 4sq.3
 |-  ( ph -> P = ( ( 2 x. N ) + 1 ) )
4 4sq.4
 |-  ( ph -> P e. Prime )
5 4sq.5
 |-  ( ph -> ( 0 ... ( 2 x. N ) ) C_ S )
6 4sq.6
 |-  T = { i e. NN | ( i x. P ) e. S }
7 4sq.7
 |-  M = inf ( T , RR , < )
8 4sq.m
 |-  ( ph -> M e. ( ZZ>= ` 2 ) )
9 4sq.a
 |-  ( ph -> A e. ZZ )
10 4sq.b
 |-  ( ph -> B e. ZZ )
11 4sq.c
 |-  ( ph -> C e. ZZ )
12 4sq.d
 |-  ( ph -> D e. ZZ )
13 4sq.e
 |-  E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) )
14 4sq.f
 |-  F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) )
15 4sq.g
 |-  G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) )
16 4sq.h
 |-  H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) )
17 4sq.r
 |-  R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M )
18 4sq.p
 |-  ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) )
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4sqlem16
 |-  ( ph -> ( R <_ M /\ ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) ) )
20 19 simpld
 |-  ( ph -> R <_ M )
21 6 ssrab3
 |-  T C_ NN
22 nnuz
 |-  NN = ( ZZ>= ` 1 )
23 21 22 sseqtri
 |-  T C_ ( ZZ>= ` 1 )
24 1 2 3 4 5 6 7 4sqlem13
 |-  ( ph -> ( T =/= (/) /\ M < P ) )
25 24 simpld
 |-  ( ph -> T =/= (/) )
26 infssuzcl
 |-  ( ( T C_ ( ZZ>= ` 1 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T )
27 23 25 26 sylancr
 |-  ( ph -> inf ( T , RR , < ) e. T )
28 7 27 eqeltrid
 |-  ( ph -> M e. T )
29 21 28 sseldi
 |-  ( ph -> M e. NN )
30 29 nnred
 |-  ( ph -> M e. RR )
31 24 simprd
 |-  ( ph -> M < P )
32 30 31 ltned
 |-  ( ph -> M =/= P )
33 29 nncnd
 |-  ( ph -> M e. CC )
34 33 sqvald
 |-  ( ph -> ( M ^ 2 ) = ( M x. M ) )
35 34 breq1d
 |-  ( ph -> ( ( M ^ 2 ) || ( M x. P ) <-> ( M x. M ) || ( M x. P ) ) )
36 29 nnzd
 |-  ( ph -> M e. ZZ )
37 prmz
 |-  ( P e. Prime -> P e. ZZ )
38 4 37 syl
 |-  ( ph -> P e. ZZ )
39 29 nnne0d
 |-  ( ph -> M =/= 0 )
40 dvdscmulr
 |-  ( ( M e. ZZ /\ P e. ZZ /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( ( M x. M ) || ( M x. P ) <-> M || P ) )
41 36 38 36 39 40 syl112anc
 |-  ( ph -> ( ( M x. M ) || ( M x. P ) <-> M || P ) )
42 dvdsprm
 |-  ( ( M e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( M || P <-> M = P ) )
43 8 4 42 syl2anc
 |-  ( ph -> ( M || P <-> M = P ) )
44 35 41 43 3bitrd
 |-  ( ph -> ( ( M ^ 2 ) || ( M x. P ) <-> M = P ) )
45 44 necon3bbid
 |-  ( ph -> ( -. ( M ^ 2 ) || ( M x. P ) <-> M =/= P ) )
46 32 45 mpbird
 |-  ( ph -> -. ( M ^ 2 ) || ( M x. P ) )
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4sqlem14
 |-  ( ph -> R e. NN0 )
48 elnn0
 |-  ( R e. NN0 <-> ( R e. NN \/ R = 0 ) )
49 47 48 sylib
 |-  ( ph -> ( R e. NN \/ R = 0 ) )
50 49 ord
 |-  ( ph -> ( -. R e. NN -> R = 0 ) )
51 orc
 |-  ( R = 0 -> ( R = 0 \/ R = M ) )
52 19 simprd
 |-  ( ph -> ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) )
53 51 52 syl5
 |-  ( ph -> ( R = 0 -> ( M ^ 2 ) || ( M x. P ) ) )
54 50 53 syld
 |-  ( ph -> ( -. R e. NN -> ( M ^ 2 ) || ( M x. P ) ) )
55 46 54 mt3d
 |-  ( ph -> R e. NN )
56 gzreim
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A + ( _i x. B ) ) e. Z[i] )
57 9 10 56 syl2anc
 |-  ( ph -> ( A + ( _i x. B ) ) e. Z[i] )
58 gzcn
 |-  ( ( A + ( _i x. B ) ) e. Z[i] -> ( A + ( _i x. B ) ) e. CC )
59 57 58 syl
 |-  ( ph -> ( A + ( _i x. B ) ) e. CC )
60 59 absvalsq2d
 |-  ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) )
61 9 zred
 |-  ( ph -> A e. RR )
62 10 zred
 |-  ( ph -> B e. RR )
63 61 62 crred
 |-  ( ph -> ( Re ` ( A + ( _i x. B ) ) ) = A )
64 63 oveq1d
 |-  ( ph -> ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( A ^ 2 ) )
65 61 62 crimd
 |-  ( ph -> ( Im ` ( A + ( _i x. B ) ) ) = B )
66 65 oveq1d
 |-  ( ph -> ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( B ^ 2 ) )
67 64 66 oveq12d
 |-  ( ph -> ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) )
68 60 67 eqtrd
 |-  ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) )
69 gzreim
 |-  ( ( C e. ZZ /\ D e. ZZ ) -> ( C + ( _i x. D ) ) e. Z[i] )
70 11 12 69 syl2anc
 |-  ( ph -> ( C + ( _i x. D ) ) e. Z[i] )
71 gzcn
 |-  ( ( C + ( _i x. D ) ) e. Z[i] -> ( C + ( _i x. D ) ) e. CC )
72 70 71 syl
 |-  ( ph -> ( C + ( _i x. D ) ) e. CC )
73 72 absvalsq2d
 |-  ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) )
74 11 zred
 |-  ( ph -> C e. RR )
75 12 zred
 |-  ( ph -> D e. RR )
76 74 75 crred
 |-  ( ph -> ( Re ` ( C + ( _i x. D ) ) ) = C )
77 76 oveq1d
 |-  ( ph -> ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( C ^ 2 ) )
78 74 75 crimd
 |-  ( ph -> ( Im ` ( C + ( _i x. D ) ) ) = D )
79 78 oveq1d
 |-  ( ph -> ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( D ^ 2 ) )
80 77 79 oveq12d
 |-  ( ph -> ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) )
81 73 80 eqtrd
 |-  ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) )
82 68 81 oveq12d
 |-  ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) )
83 18 82 eqtr4d
 |-  ( ph -> ( M x. P ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) )
84 83 oveq1d
 |-  ( ph -> ( ( M x. P ) / M ) = ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) )
85 prmnn
 |-  ( P e. Prime -> P e. NN )
86 4 85 syl
 |-  ( ph -> P e. NN )
87 86 nncnd
 |-  ( ph -> P e. CC )
88 87 33 39 divcan3d
 |-  ( ph -> ( ( M x. P ) / M ) = P )
89 84 88 eqtr3d
 |-  ( ph -> ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) = P )
90 9 29 13 4sqlem5
 |-  ( ph -> ( E e. ZZ /\ ( ( A - E ) / M ) e. ZZ ) )
91 90 simpld
 |-  ( ph -> E e. ZZ )
92 10 29 14 4sqlem5
 |-  ( ph -> ( F e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) )
93 92 simpld
 |-  ( ph -> F e. ZZ )
94 gzreim
 |-  ( ( E e. ZZ /\ F e. ZZ ) -> ( E + ( _i x. F ) ) e. Z[i] )
95 91 93 94 syl2anc
 |-  ( ph -> ( E + ( _i x. F ) ) e. Z[i] )
96 gzcn
 |-  ( ( E + ( _i x. F ) ) e. Z[i] -> ( E + ( _i x. F ) ) e. CC )
97 95 96 syl
 |-  ( ph -> ( E + ( _i x. F ) ) e. CC )
98 97 absvalsq2d
 |-  ( ph -> ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) ) )
99 91 zred
 |-  ( ph -> E e. RR )
100 93 zred
 |-  ( ph -> F e. RR )
101 99 100 crred
 |-  ( ph -> ( Re ` ( E + ( _i x. F ) ) ) = E )
102 101 oveq1d
 |-  ( ph -> ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( E ^ 2 ) )
103 99 100 crimd
 |-  ( ph -> ( Im ` ( E + ( _i x. F ) ) ) = F )
104 103 oveq1d
 |-  ( ph -> ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( F ^ 2 ) )
105 102 104 oveq12d
 |-  ( ph -> ( ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) )
106 98 105 eqtrd
 |-  ( ph -> ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) )
107 11 29 15 4sqlem5
 |-  ( ph -> ( G e. ZZ /\ ( ( C - G ) / M ) e. ZZ ) )
108 107 simpld
 |-  ( ph -> G e. ZZ )
109 12 29 16 4sqlem5
 |-  ( ph -> ( H e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) )
110 109 simpld
 |-  ( ph -> H e. ZZ )
111 gzreim
 |-  ( ( G e. ZZ /\ H e. ZZ ) -> ( G + ( _i x. H ) ) e. Z[i] )
112 108 110 111 syl2anc
 |-  ( ph -> ( G + ( _i x. H ) ) e. Z[i] )
113 gzcn
 |-  ( ( G + ( _i x. H ) ) e. Z[i] -> ( G + ( _i x. H ) ) e. CC )
114 112 113 syl
 |-  ( ph -> ( G + ( _i x. H ) ) e. CC )
115 114 absvalsq2d
 |-  ( ph -> ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) + ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) ) )
116 108 zred
 |-  ( ph -> G e. RR )
117 110 zred
 |-  ( ph -> H e. RR )
118 116 117 crred
 |-  ( ph -> ( Re ` ( G + ( _i x. H ) ) ) = G )
119 118 oveq1d
 |-  ( ph -> ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( G ^ 2 ) )
120 116 117 crimd
 |-  ( ph -> ( Im ` ( G + ( _i x. H ) ) ) = H )
121 120 oveq1d
 |-  ( ph -> ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( H ^ 2 ) )
122 119 121 oveq12d
 |-  ( ph -> ( ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) + ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( G ^ 2 ) + ( H ^ 2 ) ) )
123 115 122 eqtrd
 |-  ( ph -> ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( ( G ^ 2 ) + ( H ^ 2 ) ) )
124 106 123 oveq12d
 |-  ( ph -> ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) )
125 124 oveq1d
 |-  ( ph -> ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) )
126 125 17 eqtr4di
 |-  ( ph -> ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) = R )
127 89 126 oveq12d
 |-  ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) = ( P x. R ) )
128 55 nncnd
 |-  ( ph -> R e. CC )
129 87 128 mulcomd
 |-  ( ph -> ( P x. R ) = ( R x. P ) )
130 127 129 eqtrd
 |-  ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) = ( R x. P ) )
131 eqid
 |-  ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) )
132 eqid
 |-  ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) )
133 9 zcnd
 |-  ( ph -> A e. CC )
134 ax-icn
 |-  _i e. CC
135 10 zcnd
 |-  ( ph -> B e. CC )
136 mulcl
 |-  ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC )
137 134 135 136 sylancr
 |-  ( ph -> ( _i x. B ) e. CC )
138 91 zcnd
 |-  ( ph -> E e. CC )
139 93 zcnd
 |-  ( ph -> F e. CC )
140 mulcl
 |-  ( ( _i e. CC /\ F e. CC ) -> ( _i x. F ) e. CC )
141 134 139 140 sylancr
 |-  ( ph -> ( _i x. F ) e. CC )
142 133 137 138 141 addsub4d
 |-  ( ph -> ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) = ( ( A - E ) + ( ( _i x. B ) - ( _i x. F ) ) ) )
143 134 a1i
 |-  ( ph -> _i e. CC )
144 143 135 139 subdid
 |-  ( ph -> ( _i x. ( B - F ) ) = ( ( _i x. B ) - ( _i x. F ) ) )
145 144 oveq2d
 |-  ( ph -> ( ( A - E ) + ( _i x. ( B - F ) ) ) = ( ( A - E ) + ( ( _i x. B ) - ( _i x. F ) ) ) )
146 142 145 eqtr4d
 |-  ( ph -> ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) = ( ( A - E ) + ( _i x. ( B - F ) ) ) )
147 146 oveq1d
 |-  ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) = ( ( ( A - E ) + ( _i x. ( B - F ) ) ) / M ) )
148 133 138 subcld
 |-  ( ph -> ( A - E ) e. CC )
149 135 139 subcld
 |-  ( ph -> ( B - F ) e. CC )
150 mulcl
 |-  ( ( _i e. CC /\ ( B - F ) e. CC ) -> ( _i x. ( B - F ) ) e. CC )
151 134 149 150 sylancr
 |-  ( ph -> ( _i x. ( B - F ) ) e. CC )
152 148 151 33 39 divdird
 |-  ( ph -> ( ( ( A - E ) + ( _i x. ( B - F ) ) ) / M ) = ( ( ( A - E ) / M ) + ( ( _i x. ( B - F ) ) / M ) ) )
153 143 149 33 39 divassd
 |-  ( ph -> ( ( _i x. ( B - F ) ) / M ) = ( _i x. ( ( B - F ) / M ) ) )
154 153 oveq2d
 |-  ( ph -> ( ( ( A - E ) / M ) + ( ( _i x. ( B - F ) ) / M ) ) = ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) )
155 147 152 154 3eqtrd
 |-  ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) = ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) )
156 90 simprd
 |-  ( ph -> ( ( A - E ) / M ) e. ZZ )
157 92 simprd
 |-  ( ph -> ( ( B - F ) / M ) e. ZZ )
158 gzreim
 |-  ( ( ( ( A - E ) / M ) e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) -> ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) e. Z[i] )
159 156 157 158 syl2anc
 |-  ( ph -> ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) e. Z[i] )
160 155 159 eqeltrd
 |-  ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) e. Z[i] )
161 11 zcnd
 |-  ( ph -> C e. CC )
162 12 zcnd
 |-  ( ph -> D e. CC )
163 mulcl
 |-  ( ( _i e. CC /\ D e. CC ) -> ( _i x. D ) e. CC )
164 134 162 163 sylancr
 |-  ( ph -> ( _i x. D ) e. CC )
165 108 zcnd
 |-  ( ph -> G e. CC )
166 110 zcnd
 |-  ( ph -> H e. CC )
167 mulcl
 |-  ( ( _i e. CC /\ H e. CC ) -> ( _i x. H ) e. CC )
168 134 166 167 sylancr
 |-  ( ph -> ( _i x. H ) e. CC )
169 161 164 165 168 addsub4d
 |-  ( ph -> ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) = ( ( C - G ) + ( ( _i x. D ) - ( _i x. H ) ) ) )
170 143 162 166 subdid
 |-  ( ph -> ( _i x. ( D - H ) ) = ( ( _i x. D ) - ( _i x. H ) ) )
171 170 oveq2d
 |-  ( ph -> ( ( C - G ) + ( _i x. ( D - H ) ) ) = ( ( C - G ) + ( ( _i x. D ) - ( _i x. H ) ) ) )
172 169 171 eqtr4d
 |-  ( ph -> ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) = ( ( C - G ) + ( _i x. ( D - H ) ) ) )
173 172 oveq1d
 |-  ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) = ( ( ( C - G ) + ( _i x. ( D - H ) ) ) / M ) )
174 161 165 subcld
 |-  ( ph -> ( C - G ) e. CC )
175 162 166 subcld
 |-  ( ph -> ( D - H ) e. CC )
176 mulcl
 |-  ( ( _i e. CC /\ ( D - H ) e. CC ) -> ( _i x. ( D - H ) ) e. CC )
177 134 175 176 sylancr
 |-  ( ph -> ( _i x. ( D - H ) ) e. CC )
178 174 177 33 39 divdird
 |-  ( ph -> ( ( ( C - G ) + ( _i x. ( D - H ) ) ) / M ) = ( ( ( C - G ) / M ) + ( ( _i x. ( D - H ) ) / M ) ) )
179 143 175 33 39 divassd
 |-  ( ph -> ( ( _i x. ( D - H ) ) / M ) = ( _i x. ( ( D - H ) / M ) ) )
180 179 oveq2d
 |-  ( ph -> ( ( ( C - G ) / M ) + ( ( _i x. ( D - H ) ) / M ) ) = ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) )
181 173 178 180 3eqtrd
 |-  ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) = ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) )
182 107 simprd
 |-  ( ph -> ( ( C - G ) / M ) e. ZZ )
183 109 simprd
 |-  ( ph -> ( ( D - H ) / M ) e. ZZ )
184 gzreim
 |-  ( ( ( ( C - G ) / M ) e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) -> ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) e. Z[i] )
185 182 183 184 syl2anc
 |-  ( ph -> ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) e. Z[i] )
186 181 185 eqeltrd
 |-  ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) e. Z[i] )
187 86 nnnn0d
 |-  ( ph -> P e. NN0 )
188 89 187 eqeltrd
 |-  ( ph -> ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) e. NN0 )
189 1 57 70 95 112 131 132 29 160 186 188 mul4sqlem
 |-  ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) e. S )
190 130 189 eqeltrrd
 |-  ( ph -> ( R x. P ) e. S )
191 oveq1
 |-  ( i = R -> ( i x. P ) = ( R x. P ) )
192 191 eleq1d
 |-  ( i = R -> ( ( i x. P ) e. S <-> ( R x. P ) e. S ) )
193 192 6 elrab2
 |-  ( R e. T <-> ( R e. NN /\ ( R x. P ) e. S ) )
194 55 190 193 sylanbrc
 |-  ( ph -> R e. T )
195 infssuzle
 |-  ( ( T C_ ( ZZ>= ` 1 ) /\ R e. T ) -> inf ( T , RR , < ) <_ R )
196 23 194 195 sylancr
 |-  ( ph -> inf ( T , RR , < ) <_ R )
197 7 196 eqbrtrid
 |-  ( ph -> M <_ R )
198 55 nnred
 |-  ( ph -> R e. RR )
199 198 30 letri3d
 |-  ( ph -> ( R = M <-> ( R <_ M /\ M <_ R ) ) )
200 20 197 199 mpbir2and
 |-  ( ph -> R = M )
201 200 olcd
 |-  ( ph -> ( R = 0 \/ R = M ) )
202 201 52 mpd
 |-  ( ph -> ( M ^ 2 ) || ( M x. P ) )
203 202 46 pm2.65i
 |-  -. ph