| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
| 2 |
|
4sq.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
4sq.3 |
|- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
| 4 |
|
4sq.4 |
|- ( ph -> P e. Prime ) |
| 5 |
|
4sq.5 |
|- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
| 6 |
|
4sq.6 |
|- T = { i e. NN | ( i x. P ) e. S } |
| 7 |
|
4sq.7 |
|- M = inf ( T , RR , < ) |
| 8 |
|
4sq.m |
|- ( ph -> M e. ( ZZ>= ` 2 ) ) |
| 9 |
|
4sq.a |
|- ( ph -> A e. ZZ ) |
| 10 |
|
4sq.b |
|- ( ph -> B e. ZZ ) |
| 11 |
|
4sq.c |
|- ( ph -> C e. ZZ ) |
| 12 |
|
4sq.d |
|- ( ph -> D e. ZZ ) |
| 13 |
|
4sq.e |
|- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
| 14 |
|
4sq.f |
|- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
| 15 |
|
4sq.g |
|- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
| 16 |
|
4sq.h |
|- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
| 17 |
|
4sq.r |
|- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
| 18 |
|
4sq.p |
|- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
4sqlem16 |
|- ( ph -> ( R <_ M /\ ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) ) ) |
| 20 |
19
|
simpld |
|- ( ph -> R <_ M ) |
| 21 |
6
|
ssrab3 |
|- T C_ NN |
| 22 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 23 |
21 22
|
sseqtri |
|- T C_ ( ZZ>= ` 1 ) |
| 24 |
1 2 3 4 5 6 7
|
4sqlem13 |
|- ( ph -> ( T =/= (/) /\ M < P ) ) |
| 25 |
24
|
simpld |
|- ( ph -> T =/= (/) ) |
| 26 |
|
infssuzcl |
|- ( ( T C_ ( ZZ>= ` 1 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
| 27 |
23 25 26
|
sylancr |
|- ( ph -> inf ( T , RR , < ) e. T ) |
| 28 |
7 27
|
eqeltrid |
|- ( ph -> M e. T ) |
| 29 |
21 28
|
sselid |
|- ( ph -> M e. NN ) |
| 30 |
29
|
nnred |
|- ( ph -> M e. RR ) |
| 31 |
24
|
simprd |
|- ( ph -> M < P ) |
| 32 |
30 31
|
ltned |
|- ( ph -> M =/= P ) |
| 33 |
29
|
nncnd |
|- ( ph -> M e. CC ) |
| 34 |
33
|
sqvald |
|- ( ph -> ( M ^ 2 ) = ( M x. M ) ) |
| 35 |
34
|
breq1d |
|- ( ph -> ( ( M ^ 2 ) || ( M x. P ) <-> ( M x. M ) || ( M x. P ) ) ) |
| 36 |
29
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 37 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 38 |
4 37
|
syl |
|- ( ph -> P e. ZZ ) |
| 39 |
29
|
nnne0d |
|- ( ph -> M =/= 0 ) |
| 40 |
|
dvdscmulr |
|- ( ( M e. ZZ /\ P e. ZZ /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( ( M x. M ) || ( M x. P ) <-> M || P ) ) |
| 41 |
36 38 36 39 40
|
syl112anc |
|- ( ph -> ( ( M x. M ) || ( M x. P ) <-> M || P ) ) |
| 42 |
|
dvdsprm |
|- ( ( M e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( M || P <-> M = P ) ) |
| 43 |
8 4 42
|
syl2anc |
|- ( ph -> ( M || P <-> M = P ) ) |
| 44 |
35 41 43
|
3bitrd |
|- ( ph -> ( ( M ^ 2 ) || ( M x. P ) <-> M = P ) ) |
| 45 |
44
|
necon3bbid |
|- ( ph -> ( -. ( M ^ 2 ) || ( M x. P ) <-> M =/= P ) ) |
| 46 |
32 45
|
mpbird |
|- ( ph -> -. ( M ^ 2 ) || ( M x. P ) ) |
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
4sqlem14 |
|- ( ph -> R e. NN0 ) |
| 48 |
|
elnn0 |
|- ( R e. NN0 <-> ( R e. NN \/ R = 0 ) ) |
| 49 |
47 48
|
sylib |
|- ( ph -> ( R e. NN \/ R = 0 ) ) |
| 50 |
49
|
ord |
|- ( ph -> ( -. R e. NN -> R = 0 ) ) |
| 51 |
|
orc |
|- ( R = 0 -> ( R = 0 \/ R = M ) ) |
| 52 |
19
|
simprd |
|- ( ph -> ( ( R = 0 \/ R = M ) -> ( M ^ 2 ) || ( M x. P ) ) ) |
| 53 |
51 52
|
syl5 |
|- ( ph -> ( R = 0 -> ( M ^ 2 ) || ( M x. P ) ) ) |
| 54 |
50 53
|
syld |
|- ( ph -> ( -. R e. NN -> ( M ^ 2 ) || ( M x. P ) ) ) |
| 55 |
46 54
|
mt3d |
|- ( ph -> R e. NN ) |
| 56 |
|
gzreim |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + ( _i x. B ) ) e. Z[i] ) |
| 57 |
9 10 56
|
syl2anc |
|- ( ph -> ( A + ( _i x. B ) ) e. Z[i] ) |
| 58 |
|
gzcn |
|- ( ( A + ( _i x. B ) ) e. Z[i] -> ( A + ( _i x. B ) ) e. CC ) |
| 59 |
57 58
|
syl |
|- ( ph -> ( A + ( _i x. B ) ) e. CC ) |
| 60 |
59
|
absvalsq2d |
|- ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) ) |
| 61 |
9
|
zred |
|- ( ph -> A e. RR ) |
| 62 |
10
|
zred |
|- ( ph -> B e. RR ) |
| 63 |
61 62
|
crred |
|- ( ph -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |
| 64 |
63
|
oveq1d |
|- ( ph -> ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( A ^ 2 ) ) |
| 65 |
61 62
|
crimd |
|- ( ph -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |
| 66 |
65
|
oveq1d |
|- ( ph -> ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( B ^ 2 ) ) |
| 67 |
64 66
|
oveq12d |
|- ( ph -> ( ( ( Re ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( Im ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 68 |
60 67
|
eqtrd |
|- ( ph -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 69 |
|
gzreim |
|- ( ( C e. ZZ /\ D e. ZZ ) -> ( C + ( _i x. D ) ) e. Z[i] ) |
| 70 |
11 12 69
|
syl2anc |
|- ( ph -> ( C + ( _i x. D ) ) e. Z[i] ) |
| 71 |
|
gzcn |
|- ( ( C + ( _i x. D ) ) e. Z[i] -> ( C + ( _i x. D ) ) e. CC ) |
| 72 |
70 71
|
syl |
|- ( ph -> ( C + ( _i x. D ) ) e. CC ) |
| 73 |
72
|
absvalsq2d |
|- ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) |
| 74 |
11
|
zred |
|- ( ph -> C e. RR ) |
| 75 |
12
|
zred |
|- ( ph -> D e. RR ) |
| 76 |
74 75
|
crred |
|- ( ph -> ( Re ` ( C + ( _i x. D ) ) ) = C ) |
| 77 |
76
|
oveq1d |
|- ( ph -> ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( C ^ 2 ) ) |
| 78 |
74 75
|
crimd |
|- ( ph -> ( Im ` ( C + ( _i x. D ) ) ) = D ) |
| 79 |
78
|
oveq1d |
|- ( ph -> ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( D ^ 2 ) ) |
| 80 |
77 79
|
oveq12d |
|- ( ph -> ( ( ( Re ` ( C + ( _i x. D ) ) ) ^ 2 ) + ( ( Im ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 81 |
73 80
|
eqtrd |
|- ( ph -> ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) = ( ( C ^ 2 ) + ( D ^ 2 ) ) ) |
| 82 |
68 81
|
oveq12d |
|- ( ph -> ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 83 |
18 82
|
eqtr4d |
|- ( ph -> ( M x. P ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) ) |
| 84 |
83
|
oveq1d |
|- ( ph -> ( ( M x. P ) / M ) = ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) ) |
| 85 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 86 |
4 85
|
syl |
|- ( ph -> P e. NN ) |
| 87 |
86
|
nncnd |
|- ( ph -> P e. CC ) |
| 88 |
87 33 39
|
divcan3d |
|- ( ph -> ( ( M x. P ) / M ) = P ) |
| 89 |
84 88
|
eqtr3d |
|- ( ph -> ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) = P ) |
| 90 |
9 29 13
|
4sqlem5 |
|- ( ph -> ( E e. ZZ /\ ( ( A - E ) / M ) e. ZZ ) ) |
| 91 |
90
|
simpld |
|- ( ph -> E e. ZZ ) |
| 92 |
10 29 14
|
4sqlem5 |
|- ( ph -> ( F e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) ) |
| 93 |
92
|
simpld |
|- ( ph -> F e. ZZ ) |
| 94 |
|
gzreim |
|- ( ( E e. ZZ /\ F e. ZZ ) -> ( E + ( _i x. F ) ) e. Z[i] ) |
| 95 |
91 93 94
|
syl2anc |
|- ( ph -> ( E + ( _i x. F ) ) e. Z[i] ) |
| 96 |
|
gzcn |
|- ( ( E + ( _i x. F ) ) e. Z[i] -> ( E + ( _i x. F ) ) e. CC ) |
| 97 |
95 96
|
syl |
|- ( ph -> ( E + ( _i x. F ) ) e. CC ) |
| 98 |
97
|
absvalsq2d |
|- ( ph -> ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) ) ) |
| 99 |
91
|
zred |
|- ( ph -> E e. RR ) |
| 100 |
93
|
zred |
|- ( ph -> F e. RR ) |
| 101 |
99 100
|
crred |
|- ( ph -> ( Re ` ( E + ( _i x. F ) ) ) = E ) |
| 102 |
101
|
oveq1d |
|- ( ph -> ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( E ^ 2 ) ) |
| 103 |
99 100
|
crimd |
|- ( ph -> ( Im ` ( E + ( _i x. F ) ) ) = F ) |
| 104 |
103
|
oveq1d |
|- ( ph -> ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( F ^ 2 ) ) |
| 105 |
102 104
|
oveq12d |
|- ( ph -> ( ( ( Re ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( Im ` ( E + ( _i x. F ) ) ) ^ 2 ) ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 106 |
98 105
|
eqtrd |
|- ( ph -> ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) = ( ( E ^ 2 ) + ( F ^ 2 ) ) ) |
| 107 |
11 29 15
|
4sqlem5 |
|- ( ph -> ( G e. ZZ /\ ( ( C - G ) / M ) e. ZZ ) ) |
| 108 |
107
|
simpld |
|- ( ph -> G e. ZZ ) |
| 109 |
12 29 16
|
4sqlem5 |
|- ( ph -> ( H e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) ) |
| 110 |
109
|
simpld |
|- ( ph -> H e. ZZ ) |
| 111 |
|
gzreim |
|- ( ( G e. ZZ /\ H e. ZZ ) -> ( G + ( _i x. H ) ) e. Z[i] ) |
| 112 |
108 110 111
|
syl2anc |
|- ( ph -> ( G + ( _i x. H ) ) e. Z[i] ) |
| 113 |
|
gzcn |
|- ( ( G + ( _i x. H ) ) e. Z[i] -> ( G + ( _i x. H ) ) e. CC ) |
| 114 |
112 113
|
syl |
|- ( ph -> ( G + ( _i x. H ) ) e. CC ) |
| 115 |
114
|
absvalsq2d |
|- ( ph -> ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) + ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) ) ) |
| 116 |
108
|
zred |
|- ( ph -> G e. RR ) |
| 117 |
110
|
zred |
|- ( ph -> H e. RR ) |
| 118 |
116 117
|
crred |
|- ( ph -> ( Re ` ( G + ( _i x. H ) ) ) = G ) |
| 119 |
118
|
oveq1d |
|- ( ph -> ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( G ^ 2 ) ) |
| 120 |
116 117
|
crimd |
|- ( ph -> ( Im ` ( G + ( _i x. H ) ) ) = H ) |
| 121 |
120
|
oveq1d |
|- ( ph -> ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( H ^ 2 ) ) |
| 122 |
119 121
|
oveq12d |
|- ( ph -> ( ( ( Re ` ( G + ( _i x. H ) ) ) ^ 2 ) + ( ( Im ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( G ^ 2 ) + ( H ^ 2 ) ) ) |
| 123 |
115 122
|
eqtrd |
|- ( ph -> ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) = ( ( G ^ 2 ) + ( H ^ 2 ) ) ) |
| 124 |
106 123
|
oveq12d |
|- ( ph -> ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 125 |
124
|
oveq1d |
|- ( ph -> ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) ) |
| 126 |
125 17
|
eqtr4di |
|- ( ph -> ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) = R ) |
| 127 |
89 126
|
oveq12d |
|- ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) = ( P x. R ) ) |
| 128 |
55
|
nncnd |
|- ( ph -> R e. CC ) |
| 129 |
87 128
|
mulcomd |
|- ( ph -> ( P x. R ) = ( R x. P ) ) |
| 130 |
127 129
|
eqtrd |
|- ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) = ( R x. P ) ) |
| 131 |
|
eqid |
|- ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) = ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) |
| 132 |
|
eqid |
|- ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) = ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) |
| 133 |
9
|
zcnd |
|- ( ph -> A e. CC ) |
| 134 |
|
ax-icn |
|- _i e. CC |
| 135 |
10
|
zcnd |
|- ( ph -> B e. CC ) |
| 136 |
|
mulcl |
|- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
| 137 |
134 135 136
|
sylancr |
|- ( ph -> ( _i x. B ) e. CC ) |
| 138 |
91
|
zcnd |
|- ( ph -> E e. CC ) |
| 139 |
93
|
zcnd |
|- ( ph -> F e. CC ) |
| 140 |
|
mulcl |
|- ( ( _i e. CC /\ F e. CC ) -> ( _i x. F ) e. CC ) |
| 141 |
134 139 140
|
sylancr |
|- ( ph -> ( _i x. F ) e. CC ) |
| 142 |
133 137 138 141
|
addsub4d |
|- ( ph -> ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) = ( ( A - E ) + ( ( _i x. B ) - ( _i x. F ) ) ) ) |
| 143 |
134
|
a1i |
|- ( ph -> _i e. CC ) |
| 144 |
143 135 139
|
subdid |
|- ( ph -> ( _i x. ( B - F ) ) = ( ( _i x. B ) - ( _i x. F ) ) ) |
| 145 |
144
|
oveq2d |
|- ( ph -> ( ( A - E ) + ( _i x. ( B - F ) ) ) = ( ( A - E ) + ( ( _i x. B ) - ( _i x. F ) ) ) ) |
| 146 |
142 145
|
eqtr4d |
|- ( ph -> ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) = ( ( A - E ) + ( _i x. ( B - F ) ) ) ) |
| 147 |
146
|
oveq1d |
|- ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) = ( ( ( A - E ) + ( _i x. ( B - F ) ) ) / M ) ) |
| 148 |
133 138
|
subcld |
|- ( ph -> ( A - E ) e. CC ) |
| 149 |
135 139
|
subcld |
|- ( ph -> ( B - F ) e. CC ) |
| 150 |
|
mulcl |
|- ( ( _i e. CC /\ ( B - F ) e. CC ) -> ( _i x. ( B - F ) ) e. CC ) |
| 151 |
134 149 150
|
sylancr |
|- ( ph -> ( _i x. ( B - F ) ) e. CC ) |
| 152 |
148 151 33 39
|
divdird |
|- ( ph -> ( ( ( A - E ) + ( _i x. ( B - F ) ) ) / M ) = ( ( ( A - E ) / M ) + ( ( _i x. ( B - F ) ) / M ) ) ) |
| 153 |
143 149 33 39
|
divassd |
|- ( ph -> ( ( _i x. ( B - F ) ) / M ) = ( _i x. ( ( B - F ) / M ) ) ) |
| 154 |
153
|
oveq2d |
|- ( ph -> ( ( ( A - E ) / M ) + ( ( _i x. ( B - F ) ) / M ) ) = ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) ) |
| 155 |
147 152 154
|
3eqtrd |
|- ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) = ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) ) |
| 156 |
90
|
simprd |
|- ( ph -> ( ( A - E ) / M ) e. ZZ ) |
| 157 |
92
|
simprd |
|- ( ph -> ( ( B - F ) / M ) e. ZZ ) |
| 158 |
|
gzreim |
|- ( ( ( ( A - E ) / M ) e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) -> ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) e. Z[i] ) |
| 159 |
156 157 158
|
syl2anc |
|- ( ph -> ( ( ( A - E ) / M ) + ( _i x. ( ( B - F ) / M ) ) ) e. Z[i] ) |
| 160 |
155 159
|
eqeltrd |
|- ( ph -> ( ( ( A + ( _i x. B ) ) - ( E + ( _i x. F ) ) ) / M ) e. Z[i] ) |
| 161 |
11
|
zcnd |
|- ( ph -> C e. CC ) |
| 162 |
12
|
zcnd |
|- ( ph -> D e. CC ) |
| 163 |
|
mulcl |
|- ( ( _i e. CC /\ D e. CC ) -> ( _i x. D ) e. CC ) |
| 164 |
134 162 163
|
sylancr |
|- ( ph -> ( _i x. D ) e. CC ) |
| 165 |
108
|
zcnd |
|- ( ph -> G e. CC ) |
| 166 |
110
|
zcnd |
|- ( ph -> H e. CC ) |
| 167 |
|
mulcl |
|- ( ( _i e. CC /\ H e. CC ) -> ( _i x. H ) e. CC ) |
| 168 |
134 166 167
|
sylancr |
|- ( ph -> ( _i x. H ) e. CC ) |
| 169 |
161 164 165 168
|
addsub4d |
|- ( ph -> ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) = ( ( C - G ) + ( ( _i x. D ) - ( _i x. H ) ) ) ) |
| 170 |
143 162 166
|
subdid |
|- ( ph -> ( _i x. ( D - H ) ) = ( ( _i x. D ) - ( _i x. H ) ) ) |
| 171 |
170
|
oveq2d |
|- ( ph -> ( ( C - G ) + ( _i x. ( D - H ) ) ) = ( ( C - G ) + ( ( _i x. D ) - ( _i x. H ) ) ) ) |
| 172 |
169 171
|
eqtr4d |
|- ( ph -> ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) = ( ( C - G ) + ( _i x. ( D - H ) ) ) ) |
| 173 |
172
|
oveq1d |
|- ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) = ( ( ( C - G ) + ( _i x. ( D - H ) ) ) / M ) ) |
| 174 |
161 165
|
subcld |
|- ( ph -> ( C - G ) e. CC ) |
| 175 |
162 166
|
subcld |
|- ( ph -> ( D - H ) e. CC ) |
| 176 |
|
mulcl |
|- ( ( _i e. CC /\ ( D - H ) e. CC ) -> ( _i x. ( D - H ) ) e. CC ) |
| 177 |
134 175 176
|
sylancr |
|- ( ph -> ( _i x. ( D - H ) ) e. CC ) |
| 178 |
174 177 33 39
|
divdird |
|- ( ph -> ( ( ( C - G ) + ( _i x. ( D - H ) ) ) / M ) = ( ( ( C - G ) / M ) + ( ( _i x. ( D - H ) ) / M ) ) ) |
| 179 |
143 175 33 39
|
divassd |
|- ( ph -> ( ( _i x. ( D - H ) ) / M ) = ( _i x. ( ( D - H ) / M ) ) ) |
| 180 |
179
|
oveq2d |
|- ( ph -> ( ( ( C - G ) / M ) + ( ( _i x. ( D - H ) ) / M ) ) = ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) ) |
| 181 |
173 178 180
|
3eqtrd |
|- ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) = ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) ) |
| 182 |
107
|
simprd |
|- ( ph -> ( ( C - G ) / M ) e. ZZ ) |
| 183 |
109
|
simprd |
|- ( ph -> ( ( D - H ) / M ) e. ZZ ) |
| 184 |
|
gzreim |
|- ( ( ( ( C - G ) / M ) e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) -> ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) e. Z[i] ) |
| 185 |
182 183 184
|
syl2anc |
|- ( ph -> ( ( ( C - G ) / M ) + ( _i x. ( ( D - H ) / M ) ) ) e. Z[i] ) |
| 186 |
181 185
|
eqeltrd |
|- ( ph -> ( ( ( C + ( _i x. D ) ) - ( G + ( _i x. H ) ) ) / M ) e. Z[i] ) |
| 187 |
86
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 188 |
89 187
|
eqeltrd |
|- ( ph -> ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) e. NN0 ) |
| 189 |
1 57 70 95 112 131 132 29 160 186 188
|
mul4sqlem |
|- ( ph -> ( ( ( ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) + ( ( abs ` ( C + ( _i x. D ) ) ) ^ 2 ) ) / M ) x. ( ( ( ( abs ` ( E + ( _i x. F ) ) ) ^ 2 ) + ( ( abs ` ( G + ( _i x. H ) ) ) ^ 2 ) ) / M ) ) e. S ) |
| 190 |
130 189
|
eqeltrrd |
|- ( ph -> ( R x. P ) e. S ) |
| 191 |
|
oveq1 |
|- ( i = R -> ( i x. P ) = ( R x. P ) ) |
| 192 |
191
|
eleq1d |
|- ( i = R -> ( ( i x. P ) e. S <-> ( R x. P ) e. S ) ) |
| 193 |
192 6
|
elrab2 |
|- ( R e. T <-> ( R e. NN /\ ( R x. P ) e. S ) ) |
| 194 |
55 190 193
|
sylanbrc |
|- ( ph -> R e. T ) |
| 195 |
|
infssuzle |
|- ( ( T C_ ( ZZ>= ` 1 ) /\ R e. T ) -> inf ( T , RR , < ) <_ R ) |
| 196 |
23 194 195
|
sylancr |
|- ( ph -> inf ( T , RR , < ) <_ R ) |
| 197 |
7 196
|
eqbrtrid |
|- ( ph -> M <_ R ) |
| 198 |
55
|
nnred |
|- ( ph -> R e. RR ) |
| 199 |
198 30
|
letri3d |
|- ( ph -> ( R = M <-> ( R <_ M /\ M <_ R ) ) ) |
| 200 |
20 197 199
|
mpbir2and |
|- ( ph -> R = M ) |
| 201 |
200
|
olcd |
|- ( ph -> ( R = 0 \/ R = M ) ) |
| 202 |
201 52
|
mpd |
|- ( ph -> ( M ^ 2 ) || ( M x. P ) ) |
| 203 |
202 46
|
pm2.65i |
|- -. ph |