Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
2 |
|
4sq.2 |
|- ( ph -> N e. NN ) |
3 |
|
4sq.3 |
|- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
4 |
|
4sq.4 |
|- ( ph -> P e. Prime ) |
5 |
|
4sq.5 |
|- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
6 |
|
4sq.6 |
|- T = { i e. NN | ( i x. P ) e. S } |
7 |
|
4sq.7 |
|- M = inf ( T , RR , < ) |
8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
9 |
4 8
|
syl |
|- ( ph -> P e. NN ) |
10 |
9
|
nncnd |
|- ( ph -> P e. CC ) |
11 |
10
|
mulid2d |
|- ( ph -> ( 1 x. P ) = P ) |
12 |
6
|
ssrab3 |
|- T C_ NN |
13 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
14 |
12 13
|
sseqtri |
|- T C_ ( ZZ>= ` 1 ) |
15 |
1 2 3 4 5 6 7
|
4sqlem13 |
|- ( ph -> ( T =/= (/) /\ M < P ) ) |
16 |
15
|
simpld |
|- ( ph -> T =/= (/) ) |
17 |
|
infssuzcl |
|- ( ( T C_ ( ZZ>= ` 1 ) /\ T =/= (/) ) -> inf ( T , RR , < ) e. T ) |
18 |
14 16 17
|
sylancr |
|- ( ph -> inf ( T , RR , < ) e. T ) |
19 |
7 18
|
eqeltrid |
|- ( ph -> M e. T ) |
20 |
|
oveq1 |
|- ( i = M -> ( i x. P ) = ( M x. P ) ) |
21 |
20
|
eleq1d |
|- ( i = M -> ( ( i x. P ) e. S <-> ( M x. P ) e. S ) ) |
22 |
21 6
|
elrab2 |
|- ( M e. T <-> ( M e. NN /\ ( M x. P ) e. S ) ) |
23 |
19 22
|
sylib |
|- ( ph -> ( M e. NN /\ ( M x. P ) e. S ) ) |
24 |
23
|
simprd |
|- ( ph -> ( M x. P ) e. S ) |
25 |
1
|
4sqlem2 |
|- ( ( M x. P ) e. S <-> E. a e. ZZ E. b e. ZZ E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
26 |
24 25
|
sylib |
|- ( ph -> E. a e. ZZ E. b e. ZZ E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ M e. ( ZZ>= ` 2 ) ) -> E. a e. ZZ E. b e. ZZ E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
28 |
|
simp1l |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> ph ) |
29 |
28 2
|
syl |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> N e. NN ) |
30 |
28 3
|
syl |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> P = ( ( 2 x. N ) + 1 ) ) |
31 |
28 4
|
syl |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> P e. Prime ) |
32 |
28 5
|
syl |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> ( 0 ... ( 2 x. N ) ) C_ S ) |
33 |
|
simp1r |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> M e. ( ZZ>= ` 2 ) ) |
34 |
|
simp2ll |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> a e. ZZ ) |
35 |
|
simp2lr |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> b e. ZZ ) |
36 |
|
simp2rl |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> c e. ZZ ) |
37 |
|
simp2rr |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> d e. ZZ ) |
38 |
|
eqid |
|- ( ( ( a + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( a + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
39 |
|
eqid |
|- ( ( ( b + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( b + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
40 |
|
eqid |
|- ( ( ( c + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( c + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
41 |
|
eqid |
|- ( ( ( d + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( ( ( d + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
42 |
|
eqid |
|- ( ( ( ( ( ( ( a + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) + ( ( ( ( b + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) ) + ( ( ( ( ( c + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) + ( ( ( ( d + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) ) ) / M ) = ( ( ( ( ( ( ( a + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) + ( ( ( ( b + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) ) + ( ( ( ( ( c + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) + ( ( ( ( d + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ^ 2 ) ) ) / M ) |
43 |
|
simp3 |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
44 |
1 29 30 31 32 6 7 33 34 35 36 37 38 39 40 41 42 43
|
4sqlem17 |
|- -. ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) |
45 |
44
|
pm2.21i |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) |
46 |
45
|
3expia |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( ( a e. ZZ /\ b e. ZZ ) /\ ( c e. ZZ /\ d e. ZZ ) ) ) -> ( ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) ) |
47 |
46
|
anassrs |
|- ( ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) -> ( ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) ) |
48 |
47
|
rexlimdvva |
|- ( ( ( ph /\ M e. ( ZZ>= ` 2 ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) ) |
49 |
48
|
rexlimdvva |
|- ( ( ph /\ M e. ( ZZ>= ` 2 ) ) -> ( E. a e. ZZ E. b e. ZZ E. c e. ZZ E. d e. ZZ ( M x. P ) = ( ( ( a ^ 2 ) + ( b ^ 2 ) ) + ( ( c ^ 2 ) + ( d ^ 2 ) ) ) -> -. M e. ( ZZ>= ` 2 ) ) ) |
50 |
27 49
|
mpd |
|- ( ( ph /\ M e. ( ZZ>= ` 2 ) ) -> -. M e. ( ZZ>= ` 2 ) ) |
51 |
50
|
pm2.01da |
|- ( ph -> -. M e. ( ZZ>= ` 2 ) ) |
52 |
23
|
simpld |
|- ( ph -> M e. NN ) |
53 |
|
elnn1uz2 |
|- ( M e. NN <-> ( M = 1 \/ M e. ( ZZ>= ` 2 ) ) ) |
54 |
52 53
|
sylib |
|- ( ph -> ( M = 1 \/ M e. ( ZZ>= ` 2 ) ) ) |
55 |
54
|
ord |
|- ( ph -> ( -. M = 1 -> M e. ( ZZ>= ` 2 ) ) ) |
56 |
51 55
|
mt3d |
|- ( ph -> M = 1 ) |
57 |
56 19
|
eqeltrrd |
|- ( ph -> 1 e. T ) |
58 |
|
oveq1 |
|- ( i = 1 -> ( i x. P ) = ( 1 x. P ) ) |
59 |
58
|
eleq1d |
|- ( i = 1 -> ( ( i x. P ) e. S <-> ( 1 x. P ) e. S ) ) |
60 |
59 6
|
elrab2 |
|- ( 1 e. T <-> ( 1 e. NN /\ ( 1 x. P ) e. S ) ) |
61 |
60
|
simprbi |
|- ( 1 e. T -> ( 1 x. P ) e. S ) |
62 |
57 61
|
syl |
|- ( ph -> ( 1 x. P ) e. S ) |
63 |
11 62
|
eqeltrrd |
|- ( ph -> P e. S ) |