Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
2 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
3 |
|
eleq1 |
|- ( j = 1 -> ( j e. S <-> 1 e. S ) ) |
4 |
|
eleq1 |
|- ( j = m -> ( j e. S <-> m e. S ) ) |
5 |
|
eleq1 |
|- ( j = i -> ( j e. S <-> i e. S ) ) |
6 |
|
eleq1 |
|- ( j = ( m x. i ) -> ( j e. S <-> ( m x. i ) e. S ) ) |
7 |
|
eleq1 |
|- ( j = k -> ( j e. S <-> k e. S ) ) |
8 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
9 |
8
|
oveq1i |
|- ( ( abs ` 1 ) ^ 2 ) = ( 1 ^ 2 ) |
10 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
11 |
9 10
|
eqtri |
|- ( ( abs ` 1 ) ^ 2 ) = 1 |
12 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
13 |
12
|
oveq1i |
|- ( ( abs ` 0 ) ^ 2 ) = ( 0 ^ 2 ) |
14 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
15 |
13 14
|
eqtri |
|- ( ( abs ` 0 ) ^ 2 ) = 0 |
16 |
11 15
|
oveq12i |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) = ( 1 + 0 ) |
17 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
18 |
16 17
|
eqtri |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) = 1 |
19 |
|
1z |
|- 1 e. ZZ |
20 |
|
zgz |
|- ( 1 e. ZZ -> 1 e. Z[i] ) |
21 |
19 20
|
ax-mp |
|- 1 e. Z[i] |
22 |
|
0z |
|- 0 e. ZZ |
23 |
|
zgz |
|- ( 0 e. ZZ -> 0 e. Z[i] ) |
24 |
22 23
|
ax-mp |
|- 0 e. Z[i] |
25 |
1
|
4sqlem4a |
|- ( ( 1 e. Z[i] /\ 0 e. Z[i] ) -> ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) e. S ) |
26 |
21 24 25
|
mp2an |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) e. S |
27 |
18 26
|
eqeltrri |
|- 1 e. S |
28 |
|
eleq1 |
|- ( j = 2 -> ( j e. S <-> 2 e. S ) ) |
29 |
|
eldifsn |
|- ( j e. ( Prime \ { 2 } ) <-> ( j e. Prime /\ j =/= 2 ) ) |
30 |
|
oddprm |
|- ( j e. ( Prime \ { 2 } ) -> ( ( j - 1 ) / 2 ) e. NN ) |
31 |
30
|
adantr |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( j - 1 ) / 2 ) e. NN ) |
32 |
|
eldifi |
|- ( j e. ( Prime \ { 2 } ) -> j e. Prime ) |
33 |
32
|
adantr |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. Prime ) |
34 |
|
prmnn |
|- ( j e. Prime -> j e. NN ) |
35 |
|
nncn |
|- ( j e. NN -> j e. CC ) |
36 |
33 34 35
|
3syl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. CC ) |
37 |
|
ax-1cn |
|- 1 e. CC |
38 |
|
subcl |
|- ( ( j e. CC /\ 1 e. CC ) -> ( j - 1 ) e. CC ) |
39 |
36 37 38
|
sylancl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( j - 1 ) e. CC ) |
40 |
|
2cnd |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> 2 e. CC ) |
41 |
|
2ne0 |
|- 2 =/= 0 |
42 |
41
|
a1i |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> 2 =/= 0 ) |
43 |
39 40 42
|
divcan2d |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 2 x. ( ( j - 1 ) / 2 ) ) = ( j - 1 ) ) |
44 |
43
|
oveq1d |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( 2 x. ( ( j - 1 ) / 2 ) ) + 1 ) = ( ( j - 1 ) + 1 ) ) |
45 |
|
npcan |
|- ( ( j e. CC /\ 1 e. CC ) -> ( ( j - 1 ) + 1 ) = j ) |
46 |
36 37 45
|
sylancl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( j - 1 ) + 1 ) = j ) |
47 |
44 46
|
eqtr2d |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j = ( ( 2 x. ( ( j - 1 ) / 2 ) ) + 1 ) ) |
48 |
43
|
oveq2d |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... ( 2 x. ( ( j - 1 ) / 2 ) ) ) = ( 0 ... ( j - 1 ) ) ) |
49 |
|
nnm1nn0 |
|- ( j e. NN -> ( j - 1 ) e. NN0 ) |
50 |
33 34 49
|
3syl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( j - 1 ) e. NN0 ) |
51 |
|
elnn0uz |
|- ( ( j - 1 ) e. NN0 <-> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
52 |
50 51
|
sylib |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
53 |
|
eluzfz1 |
|- ( ( j - 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( j - 1 ) ) ) |
54 |
|
fzsplit |
|- ( 0 e. ( 0 ... ( j - 1 ) ) -> ( 0 ... ( j - 1 ) ) = ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... ( j - 1 ) ) ) ) |
55 |
52 53 54
|
3syl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... ( j - 1 ) ) = ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... ( j - 1 ) ) ) ) |
56 |
48 55
|
eqtrd |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... ( 2 x. ( ( j - 1 ) / 2 ) ) ) = ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... ( j - 1 ) ) ) ) |
57 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
58 |
15 15
|
oveq12i |
|- ( ( ( abs ` 0 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) = ( 0 + 0 ) |
59 |
|
00id |
|- ( 0 + 0 ) = 0 |
60 |
58 59
|
eqtri |
|- ( ( ( abs ` 0 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) = 0 |
61 |
1
|
4sqlem4a |
|- ( ( 0 e. Z[i] /\ 0 e. Z[i] ) -> ( ( ( abs ` 0 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) e. S ) |
62 |
24 24 61
|
mp2an |
|- ( ( ( abs ` 0 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) e. S |
63 |
60 62
|
eqeltrri |
|- 0 e. S |
64 |
|
snssi |
|- ( 0 e. S -> { 0 } C_ S ) |
65 |
63 64
|
ax-mp |
|- { 0 } C_ S |
66 |
57 65
|
eqsstri |
|- ( 0 ... 0 ) C_ S |
67 |
66
|
a1i |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... 0 ) C_ S ) |
68 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
69 |
68
|
oveq1i |
|- ( ( 0 + 1 ) ... ( j - 1 ) ) = ( 1 ... ( j - 1 ) ) |
70 |
|
simpr |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> A. m e. ( 1 ... ( j - 1 ) ) m e. S ) |
71 |
|
dfss3 |
|- ( ( 1 ... ( j - 1 ) ) C_ S <-> A. m e. ( 1 ... ( j - 1 ) ) m e. S ) |
72 |
70 71
|
sylibr |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 1 ... ( j - 1 ) ) C_ S ) |
73 |
69 72
|
eqsstrid |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( 0 + 1 ) ... ( j - 1 ) ) C_ S ) |
74 |
67 73
|
unssd |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... ( j - 1 ) ) ) C_ S ) |
75 |
56 74
|
eqsstrd |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... ( 2 x. ( ( j - 1 ) / 2 ) ) ) C_ S ) |
76 |
|
oveq1 |
|- ( k = i -> ( k x. j ) = ( i x. j ) ) |
77 |
76
|
eleq1d |
|- ( k = i -> ( ( k x. j ) e. S <-> ( i x. j ) e. S ) ) |
78 |
77
|
cbvrabv |
|- { k e. NN | ( k x. j ) e. S } = { i e. NN | ( i x. j ) e. S } |
79 |
|
eqid |
|- inf ( { k e. NN | ( k x. j ) e. S } , RR , < ) = inf ( { k e. NN | ( k x. j ) e. S } , RR , < ) |
80 |
1 31 47 33 75 78 79
|
4sqlem18 |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. S ) |
81 |
29 80
|
sylanbr |
|- ( ( ( j e. Prime /\ j =/= 2 ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. S ) |
82 |
81
|
an32s |
|- ( ( ( j e. Prime /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) /\ j =/= 2 ) -> j e. S ) |
83 |
11 11
|
oveq12i |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) = ( 1 + 1 ) |
84 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
85 |
83 84
|
eqtr4i |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) = 2 |
86 |
1
|
4sqlem4a |
|- ( ( 1 e. Z[i] /\ 1 e. Z[i] ) -> ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) e. S ) |
87 |
21 21 86
|
mp2an |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) e. S |
88 |
85 87
|
eqeltrri |
|- 2 e. S |
89 |
88
|
a1i |
|- ( ( j e. Prime /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> 2 e. S ) |
90 |
28 82 89
|
pm2.61ne |
|- ( ( j e. Prime /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. S ) |
91 |
1
|
mul4sq |
|- ( ( m e. S /\ i e. S ) -> ( m x. i ) e. S ) |
92 |
91
|
a1i |
|- ( ( m e. ( ZZ>= ` 2 ) /\ i e. ( ZZ>= ` 2 ) ) -> ( ( m e. S /\ i e. S ) -> ( m x. i ) e. S ) ) |
93 |
3 4 5 6 7 27 90 92
|
prmind2 |
|- ( k e. NN -> k e. S ) |
94 |
|
id |
|- ( k = 0 -> k = 0 ) |
95 |
94 63
|
eqeltrdi |
|- ( k = 0 -> k e. S ) |
96 |
93 95
|
jaoi |
|- ( ( k e. NN \/ k = 0 ) -> k e. S ) |
97 |
2 96
|
sylbi |
|- ( k e. NN0 -> k e. S ) |
98 |
97
|
ssriv |
|- NN0 C_ S |
99 |
1
|
4sqlem1 |
|- S C_ NN0 |
100 |
98 99
|
eqssi |
|- NN0 = S |