| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
| 2 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
| 3 |
|
eleq1 |
|- ( j = 1 -> ( j e. S <-> 1 e. S ) ) |
| 4 |
|
eleq1 |
|- ( j = m -> ( j e. S <-> m e. S ) ) |
| 5 |
|
eleq1 |
|- ( j = i -> ( j e. S <-> i e. S ) ) |
| 6 |
|
eleq1 |
|- ( j = ( m x. i ) -> ( j e. S <-> ( m x. i ) e. S ) ) |
| 7 |
|
eleq1 |
|- ( j = k -> ( j e. S <-> k e. S ) ) |
| 8 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 9 |
8
|
oveq1i |
|- ( ( abs ` 1 ) ^ 2 ) = ( 1 ^ 2 ) |
| 10 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 11 |
9 10
|
eqtri |
|- ( ( abs ` 1 ) ^ 2 ) = 1 |
| 12 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 13 |
12
|
oveq1i |
|- ( ( abs ` 0 ) ^ 2 ) = ( 0 ^ 2 ) |
| 14 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
| 15 |
13 14
|
eqtri |
|- ( ( abs ` 0 ) ^ 2 ) = 0 |
| 16 |
11 15
|
oveq12i |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) = ( 1 + 0 ) |
| 17 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 18 |
16 17
|
eqtri |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) = 1 |
| 19 |
|
1z |
|- 1 e. ZZ |
| 20 |
|
zgz |
|- ( 1 e. ZZ -> 1 e. Z[i] ) |
| 21 |
19 20
|
ax-mp |
|- 1 e. Z[i] |
| 22 |
|
0z |
|- 0 e. ZZ |
| 23 |
|
zgz |
|- ( 0 e. ZZ -> 0 e. Z[i] ) |
| 24 |
22 23
|
ax-mp |
|- 0 e. Z[i] |
| 25 |
1
|
4sqlem4a |
|- ( ( 1 e. Z[i] /\ 0 e. Z[i] ) -> ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) e. S ) |
| 26 |
21 24 25
|
mp2an |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) e. S |
| 27 |
18 26
|
eqeltrri |
|- 1 e. S |
| 28 |
|
eleq1 |
|- ( j = 2 -> ( j e. S <-> 2 e. S ) ) |
| 29 |
|
eldifsn |
|- ( j e. ( Prime \ { 2 } ) <-> ( j e. Prime /\ j =/= 2 ) ) |
| 30 |
|
oddprm |
|- ( j e. ( Prime \ { 2 } ) -> ( ( j - 1 ) / 2 ) e. NN ) |
| 31 |
30
|
adantr |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( j - 1 ) / 2 ) e. NN ) |
| 32 |
|
eldifi |
|- ( j e. ( Prime \ { 2 } ) -> j e. Prime ) |
| 33 |
32
|
adantr |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. Prime ) |
| 34 |
|
prmnn |
|- ( j e. Prime -> j e. NN ) |
| 35 |
|
nncn |
|- ( j e. NN -> j e. CC ) |
| 36 |
33 34 35
|
3syl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. CC ) |
| 37 |
|
ax-1cn |
|- 1 e. CC |
| 38 |
|
subcl |
|- ( ( j e. CC /\ 1 e. CC ) -> ( j - 1 ) e. CC ) |
| 39 |
36 37 38
|
sylancl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( j - 1 ) e. CC ) |
| 40 |
|
2cnd |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> 2 e. CC ) |
| 41 |
|
2ne0 |
|- 2 =/= 0 |
| 42 |
41
|
a1i |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> 2 =/= 0 ) |
| 43 |
39 40 42
|
divcan2d |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 2 x. ( ( j - 1 ) / 2 ) ) = ( j - 1 ) ) |
| 44 |
43
|
oveq1d |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( 2 x. ( ( j - 1 ) / 2 ) ) + 1 ) = ( ( j - 1 ) + 1 ) ) |
| 45 |
|
npcan |
|- ( ( j e. CC /\ 1 e. CC ) -> ( ( j - 1 ) + 1 ) = j ) |
| 46 |
36 37 45
|
sylancl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( j - 1 ) + 1 ) = j ) |
| 47 |
44 46
|
eqtr2d |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j = ( ( 2 x. ( ( j - 1 ) / 2 ) ) + 1 ) ) |
| 48 |
43
|
oveq2d |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... ( 2 x. ( ( j - 1 ) / 2 ) ) ) = ( 0 ... ( j - 1 ) ) ) |
| 49 |
|
nnm1nn0 |
|- ( j e. NN -> ( j - 1 ) e. NN0 ) |
| 50 |
33 34 49
|
3syl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( j - 1 ) e. NN0 ) |
| 51 |
|
elnn0uz |
|- ( ( j - 1 ) e. NN0 <-> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
| 52 |
50 51
|
sylib |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
| 53 |
|
eluzfz1 |
|- ( ( j - 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( j - 1 ) ) ) |
| 54 |
|
fzsplit |
|- ( 0 e. ( 0 ... ( j - 1 ) ) -> ( 0 ... ( j - 1 ) ) = ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... ( j - 1 ) ) ) ) |
| 55 |
52 53 54
|
3syl |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... ( j - 1 ) ) = ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... ( j - 1 ) ) ) ) |
| 56 |
48 55
|
eqtrd |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... ( 2 x. ( ( j - 1 ) / 2 ) ) ) = ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... ( j - 1 ) ) ) ) |
| 57 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
| 58 |
15 15
|
oveq12i |
|- ( ( ( abs ` 0 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) = ( 0 + 0 ) |
| 59 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 60 |
58 59
|
eqtri |
|- ( ( ( abs ` 0 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) = 0 |
| 61 |
1
|
4sqlem4a |
|- ( ( 0 e. Z[i] /\ 0 e. Z[i] ) -> ( ( ( abs ` 0 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) e. S ) |
| 62 |
24 24 61
|
mp2an |
|- ( ( ( abs ` 0 ) ^ 2 ) + ( ( abs ` 0 ) ^ 2 ) ) e. S |
| 63 |
60 62
|
eqeltrri |
|- 0 e. S |
| 64 |
|
snssi |
|- ( 0 e. S -> { 0 } C_ S ) |
| 65 |
63 64
|
ax-mp |
|- { 0 } C_ S |
| 66 |
57 65
|
eqsstri |
|- ( 0 ... 0 ) C_ S |
| 67 |
66
|
a1i |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... 0 ) C_ S ) |
| 68 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 69 |
68
|
oveq1i |
|- ( ( 0 + 1 ) ... ( j - 1 ) ) = ( 1 ... ( j - 1 ) ) |
| 70 |
|
simpr |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> A. m e. ( 1 ... ( j - 1 ) ) m e. S ) |
| 71 |
|
dfss3 |
|- ( ( 1 ... ( j - 1 ) ) C_ S <-> A. m e. ( 1 ... ( j - 1 ) ) m e. S ) |
| 72 |
70 71
|
sylibr |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 1 ... ( j - 1 ) ) C_ S ) |
| 73 |
69 72
|
eqsstrid |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( 0 + 1 ) ... ( j - 1 ) ) C_ S ) |
| 74 |
67 73
|
unssd |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... ( j - 1 ) ) ) C_ S ) |
| 75 |
56 74
|
eqsstrd |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> ( 0 ... ( 2 x. ( ( j - 1 ) / 2 ) ) ) C_ S ) |
| 76 |
|
oveq1 |
|- ( k = i -> ( k x. j ) = ( i x. j ) ) |
| 77 |
76
|
eleq1d |
|- ( k = i -> ( ( k x. j ) e. S <-> ( i x. j ) e. S ) ) |
| 78 |
77
|
cbvrabv |
|- { k e. NN | ( k x. j ) e. S } = { i e. NN | ( i x. j ) e. S } |
| 79 |
|
eqid |
|- inf ( { k e. NN | ( k x. j ) e. S } , RR , < ) = inf ( { k e. NN | ( k x. j ) e. S } , RR , < ) |
| 80 |
1 31 47 33 75 78 79
|
4sqlem18 |
|- ( ( j e. ( Prime \ { 2 } ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. S ) |
| 81 |
29 80
|
sylanbr |
|- ( ( ( j e. Prime /\ j =/= 2 ) /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. S ) |
| 82 |
81
|
an32s |
|- ( ( ( j e. Prime /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) /\ j =/= 2 ) -> j e. S ) |
| 83 |
11 11
|
oveq12i |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) = ( 1 + 1 ) |
| 84 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 85 |
83 84
|
eqtr4i |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) = 2 |
| 86 |
1
|
4sqlem4a |
|- ( ( 1 e. Z[i] /\ 1 e. Z[i] ) -> ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) e. S ) |
| 87 |
21 21 86
|
mp2an |
|- ( ( ( abs ` 1 ) ^ 2 ) + ( ( abs ` 1 ) ^ 2 ) ) e. S |
| 88 |
85 87
|
eqeltrri |
|- 2 e. S |
| 89 |
88
|
a1i |
|- ( ( j e. Prime /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> 2 e. S ) |
| 90 |
28 82 89
|
pm2.61ne |
|- ( ( j e. Prime /\ A. m e. ( 1 ... ( j - 1 ) ) m e. S ) -> j e. S ) |
| 91 |
1
|
mul4sq |
|- ( ( m e. S /\ i e. S ) -> ( m x. i ) e. S ) |
| 92 |
91
|
a1i |
|- ( ( m e. ( ZZ>= ` 2 ) /\ i e. ( ZZ>= ` 2 ) ) -> ( ( m e. S /\ i e. S ) -> ( m x. i ) e. S ) ) |
| 93 |
3 4 5 6 7 27 90 92
|
prmind2 |
|- ( k e. NN -> k e. S ) |
| 94 |
|
id |
|- ( k = 0 -> k = 0 ) |
| 95 |
94 63
|
eqeltrdi |
|- ( k = 0 -> k e. S ) |
| 96 |
93 95
|
jaoi |
|- ( ( k e. NN \/ k = 0 ) -> k e. S ) |
| 97 |
2 96
|
sylbi |
|- ( k e. NN0 -> k e. S ) |
| 98 |
97
|
ssriv |
|- NN0 C_ S |
| 99 |
1
|
4sqlem1 |
|- S C_ NN0 |
| 100 |
98 99
|
eqssi |
|- NN0 = S |