Step |
Hyp |
Ref |
Expression |
1 |
|
4sqlem5.2 |
|- ( ph -> A e. ZZ ) |
2 |
|
4sqlem5.3 |
|- ( ph -> M e. NN ) |
3 |
|
4sqlem5.4 |
|- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
4 |
1
|
zcnd |
|- ( ph -> A e. CC ) |
5 |
1
|
zred |
|- ( ph -> A e. RR ) |
6 |
2
|
nnred |
|- ( ph -> M e. RR ) |
7 |
6
|
rehalfcld |
|- ( ph -> ( M / 2 ) e. RR ) |
8 |
5 7
|
readdcld |
|- ( ph -> ( A + ( M / 2 ) ) e. RR ) |
9 |
2
|
nnrpd |
|- ( ph -> M e. RR+ ) |
10 |
8 9
|
modcld |
|- ( ph -> ( ( A + ( M / 2 ) ) mod M ) e. RR ) |
11 |
10
|
recnd |
|- ( ph -> ( ( A + ( M / 2 ) ) mod M ) e. CC ) |
12 |
7
|
recnd |
|- ( ph -> ( M / 2 ) e. CC ) |
13 |
11 12
|
subcld |
|- ( ph -> ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) e. CC ) |
14 |
3 13
|
eqeltrid |
|- ( ph -> B e. CC ) |
15 |
4 14
|
nncand |
|- ( ph -> ( A - ( A - B ) ) = B ) |
16 |
4 14
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
17 |
6
|
recnd |
|- ( ph -> M e. CC ) |
18 |
2
|
nnne0d |
|- ( ph -> M =/= 0 ) |
19 |
16 17 18
|
divcan1d |
|- ( ph -> ( ( ( A - B ) / M ) x. M ) = ( A - B ) ) |
20 |
3
|
oveq2i |
|- ( A - B ) = ( A - ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) |
21 |
4 11 12
|
subsub3d |
|- ( ph -> ( A - ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) = ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) ) |
22 |
20 21
|
eqtrid |
|- ( ph -> ( A - B ) = ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) ) |
23 |
22
|
oveq1d |
|- ( ph -> ( ( A - B ) / M ) = ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) ) |
24 |
|
moddifz |
|- ( ( ( A + ( M / 2 ) ) e. RR /\ M e. RR+ ) -> ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) e. ZZ ) |
25 |
8 9 24
|
syl2anc |
|- ( ph -> ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) e. ZZ ) |
26 |
23 25
|
eqeltrd |
|- ( ph -> ( ( A - B ) / M ) e. ZZ ) |
27 |
2
|
nnzd |
|- ( ph -> M e. ZZ ) |
28 |
26 27
|
zmulcld |
|- ( ph -> ( ( ( A - B ) / M ) x. M ) e. ZZ ) |
29 |
19 28
|
eqeltrrd |
|- ( ph -> ( A - B ) e. ZZ ) |
30 |
1 29
|
zsubcld |
|- ( ph -> ( A - ( A - B ) ) e. ZZ ) |
31 |
15 30
|
eqeltrrd |
|- ( ph -> B e. ZZ ) |
32 |
31 26
|
jca |
|- ( ph -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |