| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sqlem5.2 |
|- ( ph -> A e. ZZ ) |
| 2 |
|
4sqlem5.3 |
|- ( ph -> M e. NN ) |
| 3 |
|
4sqlem5.4 |
|- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
| 4 |
1
|
zcnd |
|- ( ph -> A e. CC ) |
| 5 |
1
|
zred |
|- ( ph -> A e. RR ) |
| 6 |
2
|
nnred |
|- ( ph -> M e. RR ) |
| 7 |
6
|
rehalfcld |
|- ( ph -> ( M / 2 ) e. RR ) |
| 8 |
5 7
|
readdcld |
|- ( ph -> ( A + ( M / 2 ) ) e. RR ) |
| 9 |
2
|
nnrpd |
|- ( ph -> M e. RR+ ) |
| 10 |
8 9
|
modcld |
|- ( ph -> ( ( A + ( M / 2 ) ) mod M ) e. RR ) |
| 11 |
10
|
recnd |
|- ( ph -> ( ( A + ( M / 2 ) ) mod M ) e. CC ) |
| 12 |
7
|
recnd |
|- ( ph -> ( M / 2 ) e. CC ) |
| 13 |
11 12
|
subcld |
|- ( ph -> ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) e. CC ) |
| 14 |
3 13
|
eqeltrid |
|- ( ph -> B e. CC ) |
| 15 |
4 14
|
nncand |
|- ( ph -> ( A - ( A - B ) ) = B ) |
| 16 |
4 14
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 17 |
6
|
recnd |
|- ( ph -> M e. CC ) |
| 18 |
2
|
nnne0d |
|- ( ph -> M =/= 0 ) |
| 19 |
16 17 18
|
divcan1d |
|- ( ph -> ( ( ( A - B ) / M ) x. M ) = ( A - B ) ) |
| 20 |
3
|
oveq2i |
|- ( A - B ) = ( A - ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) |
| 21 |
4 11 12
|
subsub3d |
|- ( ph -> ( A - ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) = ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) ) |
| 22 |
20 21
|
eqtrid |
|- ( ph -> ( A - B ) = ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ph -> ( ( A - B ) / M ) = ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) ) |
| 24 |
|
moddifz |
|- ( ( ( A + ( M / 2 ) ) e. RR /\ M e. RR+ ) -> ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) e. ZZ ) |
| 25 |
8 9 24
|
syl2anc |
|- ( ph -> ( ( ( A + ( M / 2 ) ) - ( ( A + ( M / 2 ) ) mod M ) ) / M ) e. ZZ ) |
| 26 |
23 25
|
eqeltrd |
|- ( ph -> ( ( A - B ) / M ) e. ZZ ) |
| 27 |
2
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 28 |
26 27
|
zmulcld |
|- ( ph -> ( ( ( A - B ) / M ) x. M ) e. ZZ ) |
| 29 |
19 28
|
eqeltrrd |
|- ( ph -> ( A - B ) e. ZZ ) |
| 30 |
1 29
|
zsubcld |
|- ( ph -> ( A - ( A - B ) ) e. ZZ ) |
| 31 |
15 30
|
eqeltrrd |
|- ( ph -> B e. ZZ ) |
| 32 |
31 26
|
jca |
|- ( ph -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |