Description: Lemma for 4t3e12 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4t3lem.1 | |- A e. NN0 |
|
4t3lem.2 | |- B e. NN0 |
||
4t3lem.3 | |- C = ( B + 1 ) |
||
4t3lem.4 | |- ( A x. B ) = D |
||
4t3lem.5 | |- ( D + A ) = E |
||
Assertion | 4t3lem | |- ( A x. C ) = E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4t3lem.1 | |- A e. NN0 |
|
2 | 4t3lem.2 | |- B e. NN0 |
|
3 | 4t3lem.3 | |- C = ( B + 1 ) |
|
4 | 4t3lem.4 | |- ( A x. B ) = D |
|
5 | 4t3lem.5 | |- ( D + A ) = E |
|
6 | 3 | oveq2i | |- ( A x. C ) = ( A x. ( B + 1 ) ) |
7 | 1 | nn0cni | |- A e. CC |
8 | 2 | nn0cni | |- B e. CC |
9 | ax-1cn | |- 1 e. CC |
|
10 | 7 8 9 | adddii | |- ( A x. ( B + 1 ) ) = ( ( A x. B ) + ( A x. 1 ) ) |
11 | 7 | mulid1i | |- ( A x. 1 ) = A |
12 | 4 11 | oveq12i | |- ( ( A x. B ) + ( A x. 1 ) ) = ( D + A ) |
13 | 10 12 | eqtri | |- ( A x. ( B + 1 ) ) = ( D + A ) |
14 | 13 5 | eqtri | |- ( A x. ( B + 1 ) ) = E |
15 | 6 14 | eqtri | |- ( A x. C ) = E |