Metamath Proof Explorer


Theorem 4t3lem

Description: Lemma for 4t3e12 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypotheses 4t3lem.1
|- A e. NN0
4t3lem.2
|- B e. NN0
4t3lem.3
|- C = ( B + 1 )
4t3lem.4
|- ( A x. B ) = D
4t3lem.5
|- ( D + A ) = E
Assertion 4t3lem
|- ( A x. C ) = E

Proof

Step Hyp Ref Expression
1 4t3lem.1
 |-  A e. NN0
2 4t3lem.2
 |-  B e. NN0
3 4t3lem.3
 |-  C = ( B + 1 )
4 4t3lem.4
 |-  ( A x. B ) = D
5 4t3lem.5
 |-  ( D + A ) = E
6 3 oveq2i
 |-  ( A x. C ) = ( A x. ( B + 1 ) )
7 1 nn0cni
 |-  A e. CC
8 2 nn0cni
 |-  B e. CC
9 ax-1cn
 |-  1 e. CC
10 7 8 9 adddii
 |-  ( A x. ( B + 1 ) ) = ( ( A x. B ) + ( A x. 1 ) )
11 7 mulid1i
 |-  ( A x. 1 ) = A
12 4 11 oveq12i
 |-  ( ( A x. B ) + ( A x. 1 ) ) = ( D + A )
13 10 12 eqtri
 |-  ( A x. ( B + 1 ) ) = ( D + A )
14 13 5 eqtri
 |-  ( A x. ( B + 1 ) ) = E
15 6 14 eqtri
 |-  ( A x. C ) = E