Metamath Proof Explorer


Theorem 5nn0

Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 5nn0
|- 5 e. NN0

Proof

Step Hyp Ref Expression
1 5nn
 |-  5 e. NN
2 1 nnnn0i
 |-  5 e. NN0