Metamath Proof Explorer


Theorem 5odd

Description: 5 is an odd number. (Contributed by AV, 23-Jul-2020)

Ref Expression
Assertion 5odd
|- 5 e. Odd

Proof

Step Hyp Ref Expression
1 4even
 |-  4 e. Even
2 df-5
 |-  5 = ( 4 + 1 )
3 evenp1odd
 |-  ( 4 e. Even -> ( 4 + 1 ) e. Odd )
4 2 3 eqeltrid
 |-  ( 4 e. Even -> 5 e. Odd )
5 1 4 ax-mp
 |-  5 e. Odd