Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 5recm6rec | |- ( ( 1 / 5 ) - ( 1 / 6 ) ) = ( 1 / ; 3 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5cn | |- 5 e. CC |
|
| 2 | 6cn | |- 6 e. CC |
|
| 3 | 5re | |- 5 e. RR |
|
| 4 | 5pos | |- 0 < 5 |
|
| 5 | 3 4 | gt0ne0ii | |- 5 =/= 0 |
| 6 | 6re | |- 6 e. RR |
|
| 7 | 6pos | |- 0 < 6 |
|
| 8 | 6 7 | gt0ne0ii | |- 6 =/= 0 |
| 9 | 1 2 5 8 | subreci | |- ( ( 1 / 5 ) - ( 1 / 6 ) ) = ( ( 6 - 5 ) / ( 5 x. 6 ) ) |
| 10 | ax-1cn | |- 1 e. CC |
|
| 11 | 5p1e6 | |- ( 5 + 1 ) = 6 |
|
| 12 | 2 1 10 11 | subaddrii | |- ( 6 - 5 ) = 1 |
| 13 | 6t5e30 | |- ( 6 x. 5 ) = ; 3 0 |
|
| 14 | 2 1 13 | mulcomli | |- ( 5 x. 6 ) = ; 3 0 |
| 15 | 12 14 | oveq12i | |- ( ( 6 - 5 ) / ( 5 x. 6 ) ) = ( 1 / ; 3 0 ) |
| 16 | 9 15 | eqtri | |- ( ( 1 / 5 ) - ( 1 / 6 ) ) = ( 1 / ; 3 0 ) |