Step |
Hyp |
Ref |
Expression |
1 |
|
6even |
|- 6 e. Even |
2 |
|
3prm |
|- 3 e. Prime |
3 |
|
3odd |
|- 3 e. Odd |
4 |
|
gbpart6 |
|- 6 = ( 3 + 3 ) |
5 |
3 3 4
|
3pm3.2i |
|- ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) ) |
6 |
|
eleq1 |
|- ( p = 3 -> ( p e. Odd <-> 3 e. Odd ) ) |
7 |
|
biidd |
|- ( p = 3 -> ( q e. Odd <-> q e. Odd ) ) |
8 |
|
oveq1 |
|- ( p = 3 -> ( p + q ) = ( 3 + q ) ) |
9 |
8
|
eqeq2d |
|- ( p = 3 -> ( 6 = ( p + q ) <-> 6 = ( 3 + q ) ) ) |
10 |
6 7 9
|
3anbi123d |
|- ( p = 3 -> ( ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) <-> ( 3 e. Odd /\ q e. Odd /\ 6 = ( 3 + q ) ) ) ) |
11 |
|
biidd |
|- ( q = 3 -> ( 3 e. Odd <-> 3 e. Odd ) ) |
12 |
|
eleq1 |
|- ( q = 3 -> ( q e. Odd <-> 3 e. Odd ) ) |
13 |
|
oveq2 |
|- ( q = 3 -> ( 3 + q ) = ( 3 + 3 ) ) |
14 |
13
|
eqeq2d |
|- ( q = 3 -> ( 6 = ( 3 + q ) <-> 6 = ( 3 + 3 ) ) ) |
15 |
11 12 14
|
3anbi123d |
|- ( q = 3 -> ( ( 3 e. Odd /\ q e. Odd /\ 6 = ( 3 + q ) ) <-> ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) ) ) ) |
16 |
10 15
|
rspc2ev |
|- ( ( 3 e. Prime /\ 3 e. Prime /\ ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) ) ) -> E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) ) |
17 |
2 2 5 16
|
mp3an |
|- E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) |
18 |
|
isgbe |
|- ( 6 e. GoldbachEven <-> ( 6 e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) ) ) |
19 |
1 17 18
|
mpbir2an |
|- 6 e. GoldbachEven |