Metamath Proof Explorer


Theorem 6gbe

Description: 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion 6gbe
|- 6 e. GoldbachEven

Proof

Step Hyp Ref Expression
1 6even
 |-  6 e. Even
2 3prm
 |-  3 e. Prime
3 3odd
 |-  3 e. Odd
4 gbpart6
 |-  6 = ( 3 + 3 )
5 3 3 4 3pm3.2i
 |-  ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) )
6 eleq1
 |-  ( p = 3 -> ( p e. Odd <-> 3 e. Odd ) )
7 biidd
 |-  ( p = 3 -> ( q e. Odd <-> q e. Odd ) )
8 oveq1
 |-  ( p = 3 -> ( p + q ) = ( 3 + q ) )
9 8 eqeq2d
 |-  ( p = 3 -> ( 6 = ( p + q ) <-> 6 = ( 3 + q ) ) )
10 6 7 9 3anbi123d
 |-  ( p = 3 -> ( ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) <-> ( 3 e. Odd /\ q e. Odd /\ 6 = ( 3 + q ) ) ) )
11 biidd
 |-  ( q = 3 -> ( 3 e. Odd <-> 3 e. Odd ) )
12 eleq1
 |-  ( q = 3 -> ( q e. Odd <-> 3 e. Odd ) )
13 oveq2
 |-  ( q = 3 -> ( 3 + q ) = ( 3 + 3 ) )
14 13 eqeq2d
 |-  ( q = 3 -> ( 6 = ( 3 + q ) <-> 6 = ( 3 + 3 ) ) )
15 11 12 14 3anbi123d
 |-  ( q = 3 -> ( ( 3 e. Odd /\ q e. Odd /\ 6 = ( 3 + q ) ) <-> ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) ) ) )
16 10 15 rspc2ev
 |-  ( ( 3 e. Prime /\ 3 e. Prime /\ ( 3 e. Odd /\ 3 e. Odd /\ 6 = ( 3 + 3 ) ) ) -> E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) )
17 2 2 5 16 mp3an
 |-  E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) )
18 isgbe
 |-  ( 6 e. GoldbachEven <-> ( 6 e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 6 = ( p + q ) ) ) )
19 1 17 18 mpbir2an
 |-  6 e. GoldbachEven