Step |
Hyp |
Ref |
Expression |
1 |
|
6nn |
|- 6 e. NN |
2 |
1
|
nnzi |
|- 6 e. ZZ |
3 |
|
4z |
|- 4 e. ZZ |
4 |
|
gcdcom |
|- ( ( 6 e. ZZ /\ 4 e. ZZ ) -> ( 6 gcd 4 ) = ( 4 gcd 6 ) ) |
5 |
2 3 4
|
mp2an |
|- ( 6 gcd 4 ) = ( 4 gcd 6 ) |
6 |
|
4cn |
|- 4 e. CC |
7 |
|
2cn |
|- 2 e. CC |
8 |
|
4p2e6 |
|- ( 4 + 2 ) = 6 |
9 |
6 7 8
|
addcomli |
|- ( 2 + 4 ) = 6 |
10 |
9
|
oveq2i |
|- ( 4 gcd ( 2 + 4 ) ) = ( 4 gcd 6 ) |
11 |
|
2z |
|- 2 e. ZZ |
12 |
|
gcdadd |
|- ( ( 2 e. ZZ /\ 2 e. ZZ ) -> ( 2 gcd 2 ) = ( 2 gcd ( 2 + 2 ) ) ) |
13 |
11 11 12
|
mp2an |
|- ( 2 gcd 2 ) = ( 2 gcd ( 2 + 2 ) ) |
14 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
15 |
14
|
oveq2i |
|- ( 2 gcd ( 2 + 2 ) ) = ( 2 gcd 4 ) |
16 |
|
gcdcom |
|- ( ( 2 e. ZZ /\ 4 e. ZZ ) -> ( 2 gcd 4 ) = ( 4 gcd 2 ) ) |
17 |
11 3 16
|
mp2an |
|- ( 2 gcd 4 ) = ( 4 gcd 2 ) |
18 |
15 17
|
eqtri |
|- ( 2 gcd ( 2 + 2 ) ) = ( 4 gcd 2 ) |
19 |
13 18
|
eqtri |
|- ( 2 gcd 2 ) = ( 4 gcd 2 ) |
20 |
|
gcdid |
|- ( 2 e. ZZ -> ( 2 gcd 2 ) = ( abs ` 2 ) ) |
21 |
11 20
|
ax-mp |
|- ( 2 gcd 2 ) = ( abs ` 2 ) |
22 |
|
2re |
|- 2 e. RR |
23 |
|
0le2 |
|- 0 <_ 2 |
24 |
|
absid |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
25 |
22 23 24
|
mp2an |
|- ( abs ` 2 ) = 2 |
26 |
21 25
|
eqtri |
|- ( 2 gcd 2 ) = 2 |
27 |
|
gcdadd |
|- ( ( 4 e. ZZ /\ 2 e. ZZ ) -> ( 4 gcd 2 ) = ( 4 gcd ( 2 + 4 ) ) ) |
28 |
3 11 27
|
mp2an |
|- ( 4 gcd 2 ) = ( 4 gcd ( 2 + 4 ) ) |
29 |
19 26 28
|
3eqtr3ri |
|- ( 4 gcd ( 2 + 4 ) ) = 2 |
30 |
5 10 29
|
3eqtr2i |
|- ( 6 gcd 4 ) = 2 |