Metamath Proof Explorer


Theorem 6lt8

Description: 6 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 6lt8
|- 6 < 8

Proof

Step Hyp Ref Expression
1 6lt7
 |-  6 < 7
2 7lt8
 |-  7 < 8
3 6re
 |-  6 e. RR
4 7re
 |-  7 e. RR
5 8re
 |-  8 e. RR
6 3 4 5 lttri
 |-  ( ( 6 < 7 /\ 7 < 8 ) -> 6 < 8 )
7 1 2 6 mp2an
 |-  6 < 8