Description: Lemma for 6p5e11 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 6p5lem.1 | |- A e. NN0 | |
| 6p5lem.2 | |- D e. NN0 | ||
| 6p5lem.3 | |- E e. NN0 | ||
| 6p5lem.4 | |- B = ( D + 1 ) | ||
| 6p5lem.5 | |- C = ( E + 1 ) | ||
| 6p5lem.6 | |- ( A + D ) = ; 1 E | ||
| Assertion | 6p5lem | |- ( A + B ) = ; 1 C | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 6p5lem.1 | |- A e. NN0 | |
| 2 | 6p5lem.2 | |- D e. NN0 | |
| 3 | 6p5lem.3 | |- E e. NN0 | |
| 4 | 6p5lem.4 | |- B = ( D + 1 ) | |
| 5 | 6p5lem.5 | |- C = ( E + 1 ) | |
| 6 | 6p5lem.6 | |- ( A + D ) = ; 1 E | |
| 7 | 4 | oveq2i | |- ( A + B ) = ( A + ( D + 1 ) ) | 
| 8 | 1 | nn0cni | |- A e. CC | 
| 9 | 2 | nn0cni | |- D e. CC | 
| 10 | ax-1cn | |- 1 e. CC | |
| 11 | 8 9 10 | addassi | |- ( ( A + D ) + 1 ) = ( A + ( D + 1 ) ) | 
| 12 | 1nn0 | |- 1 e. NN0 | |
| 13 | 5 | eqcomi | |- ( E + 1 ) = C | 
| 14 | 12 3 13 6 | decsuc | |- ( ( A + D ) + 1 ) = ; 1 C | 
| 15 | 7 11 14 | 3eqtr2i | |- ( A + B ) = ; 1 C |