Description: Lemma for 6p5e11 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 6p5lem.1 | |- A e. NN0 |
|
6p5lem.2 | |- D e. NN0 |
||
6p5lem.3 | |- E e. NN0 |
||
6p5lem.4 | |- B = ( D + 1 ) |
||
6p5lem.5 | |- C = ( E + 1 ) |
||
6p5lem.6 | |- ( A + D ) = ; 1 E |
||
Assertion | 6p5lem | |- ( A + B ) = ; 1 C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6p5lem.1 | |- A e. NN0 |
|
2 | 6p5lem.2 | |- D e. NN0 |
|
3 | 6p5lem.3 | |- E e. NN0 |
|
4 | 6p5lem.4 | |- B = ( D + 1 ) |
|
5 | 6p5lem.5 | |- C = ( E + 1 ) |
|
6 | 6p5lem.6 | |- ( A + D ) = ; 1 E |
|
7 | 4 | oveq2i | |- ( A + B ) = ( A + ( D + 1 ) ) |
8 | 1 | nn0cni | |- A e. CC |
9 | 2 | nn0cni | |- D e. CC |
10 | ax-1cn | |- 1 e. CC |
|
11 | 8 9 10 | addassi | |- ( ( A + D ) + 1 ) = ( A + ( D + 1 ) ) |
12 | 1nn0 | |- 1 e. NN0 |
|
13 | 5 | eqcomi | |- ( E + 1 ) = C |
14 | 12 3 13 6 | decsuc | |- ( ( A + D ) + 1 ) = ; 1 C |
15 | 7 11 14 | 3eqtr2i | |- ( A + B ) = ; 1 C |