Metamath Proof Explorer


Theorem 6t4e24

Description: 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 6t4e24
|- ( 6 x. 4 ) = ; 2 4

Proof

Step Hyp Ref Expression
1 6nn0
 |-  6 e. NN0
2 3nn0
 |-  3 e. NN0
3 df-4
 |-  4 = ( 3 + 1 )
4 6t3e18
 |-  ( 6 x. 3 ) = ; 1 8
5 1nn0
 |-  1 e. NN0
6 8nn0
 |-  8 e. NN0
7 eqid
 |-  ; 1 8 = ; 1 8
8 1p1e2
 |-  ( 1 + 1 ) = 2
9 4nn0
 |-  4 e. NN0
10 8p6e14
 |-  ( 8 + 6 ) = ; 1 4
11 5 6 1 7 8 9 10 decaddci
 |-  ( ; 1 8 + 6 ) = ; 2 4
12 1 2 3 4 11 4t3lem
 |-  ( 6 x. 4 ) = ; 2 4