Metamath Proof Explorer


Theorem 6t5e30

Description: 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion 6t5e30
|- ( 6 x. 5 ) = ; 3 0

Proof

Step Hyp Ref Expression
1 6nn0
 |-  6 e. NN0
2 4nn0
 |-  4 e. NN0
3 df-5
 |-  5 = ( 4 + 1 )
4 6t4e24
 |-  ( 6 x. 4 ) = ; 2 4
5 2nn0
 |-  2 e. NN0
6 eqid
 |-  ; 2 4 = ; 2 4
7 2p1e3
 |-  ( 2 + 1 ) = 3
8 6cn
 |-  6 e. CC
9 4cn
 |-  4 e. CC
10 6p4e10
 |-  ( 6 + 4 ) = ; 1 0
11 8 9 10 addcomli
 |-  ( 4 + 6 ) = ; 1 0
12 5 2 1 6 7 11 decaddci2
 |-  ( ; 2 4 + 6 ) = ; 3 0
13 1 2 3 4 12 4t3lem
 |-  ( 6 x. 5 ) = ; 3 0