Metamath Proof Explorer


Theorem 7cn

Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022)

Ref Expression
Assertion 7cn
|- 7 e. CC

Proof

Step Hyp Ref Expression
1 df-7
 |-  7 = ( 6 + 1 )
2 6cn
 |-  6 e. CC
3 ax-1cn
 |-  1 e. CC
4 2 3 addcli
 |-  ( 6 + 1 ) e. CC
5 1 4 eqeltri
 |-  7 e. CC