| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							7odd | 
							 |-  7 e. Odd  | 
						
						
							| 2 | 
							
								
							 | 
							2prm | 
							 |-  2 e. Prime  | 
						
						
							| 3 | 
							
								
							 | 
							3prm | 
							 |-  3 e. Prime  | 
						
						
							| 4 | 
							
								
							 | 
							gbpart7 | 
							 |-  7 = ( ( 2 + 2 ) + 3 )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq2 | 
							 |-  ( r = 3 -> ( ( 2 + 2 ) + r ) = ( ( 2 + 2 ) + 3 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rspceeqv | 
							 |-  ( ( 3 e. Prime /\ 7 = ( ( 2 + 2 ) + 3 ) ) -> E. r e. Prime 7 = ( ( 2 + 2 ) + r ) )  | 
						
						
							| 7 | 
							
								3 4 6
							 | 
							mp2an | 
							 |-  E. r e. Prime 7 = ( ( 2 + 2 ) + r )  | 
						
						
							| 8 | 
							
								
							 | 
							oveq1 | 
							 |-  ( p = 2 -> ( p + q ) = ( 2 + q ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq1d | 
							 |-  ( p = 2 -> ( ( p + q ) + r ) = ( ( 2 + q ) + r ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq2d | 
							 |-  ( p = 2 -> ( 7 = ( ( p + q ) + r ) <-> 7 = ( ( 2 + q ) + r ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							rexbidv | 
							 |-  ( p = 2 -> ( E. r e. Prime 7 = ( ( p + q ) + r ) <-> E. r e. Prime 7 = ( ( 2 + q ) + r ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq2 | 
							 |-  ( q = 2 -> ( 2 + q ) = ( 2 + 2 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq1d | 
							 |-  ( q = 2 -> ( ( 2 + q ) + r ) = ( ( 2 + 2 ) + r ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq2d | 
							 |-  ( q = 2 -> ( 7 = ( ( 2 + q ) + r ) <-> 7 = ( ( 2 + 2 ) + r ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexbidv | 
							 |-  ( q = 2 -> ( E. r e. Prime 7 = ( ( 2 + q ) + r ) <-> E. r e. Prime 7 = ( ( 2 + 2 ) + r ) ) )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							rspc2ev | 
							 |-  ( ( 2 e. Prime /\ 2 e. Prime /\ E. r e. Prime 7 = ( ( 2 + 2 ) + r ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r ) )  | 
						
						
							| 17 | 
							
								2 2 7 16
							 | 
							mp3an | 
							 |-  E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r )  | 
						
						
							| 18 | 
							
								
							 | 
							isgbow | 
							 |-  ( 7 e. GoldbachOddW <-> ( 7 e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime 7 = ( ( p + q ) + r ) ) )  | 
						
						
							| 19 | 
							
								1 17 18
							 | 
							mpbir2an | 
							 |-  7 e. GoldbachOddW  |