Metamath Proof Explorer


Theorem 7lt9

Description: 7 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 7lt9
|- 7 < 9

Proof

Step Hyp Ref Expression
1 7lt8
 |-  7 < 8
2 8lt9
 |-  8 < 9
3 7re
 |-  7 e. RR
4 8re
 |-  8 e. RR
5 9re
 |-  9 e. RR
6 3 4 5 lttri
 |-  ( ( 7 < 8 /\ 8 < 9 ) -> 7 < 9 )
7 1 2 6 mp2an
 |-  7 < 9