Description: 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 7prm | |- 7 e. Prime | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 7nn | |- 7 e. NN | |
| 2 | 1lt7 | |- 1 < 7 | |
| 3 | 2nn | |- 2 e. NN | |
| 4 | 3nn0 | |- 3 e. NN0 | |
| 5 | 1nn | |- 1 e. NN | |
| 6 | 3cn | |- 3 e. CC | |
| 7 | 2cn | |- 2 e. CC | |
| 8 | 3t2e6 | |- ( 3 x. 2 ) = 6 | |
| 9 | 6 7 8 | mulcomli | |- ( 2 x. 3 ) = 6 | 
| 10 | 9 | oveq1i | |- ( ( 2 x. 3 ) + 1 ) = ( 6 + 1 ) | 
| 11 | df-7 | |- 7 = ( 6 + 1 ) | |
| 12 | 10 11 | eqtr4i | |- ( ( 2 x. 3 ) + 1 ) = 7 | 
| 13 | 1lt2 | |- 1 < 2 | |
| 14 | 3 4 5 12 13 | ndvdsi | |- -. 2 || 7 | 
| 15 | 3nn | |- 3 e. NN | |
| 16 | 2nn0 | |- 2 e. NN0 | |
| 17 | 8 | oveq1i | |- ( ( 3 x. 2 ) + 1 ) = ( 6 + 1 ) | 
| 18 | 17 11 | eqtr4i | |- ( ( 3 x. 2 ) + 1 ) = 7 | 
| 19 | 1lt3 | |- 1 < 3 | |
| 20 | 15 16 5 18 19 | ndvdsi | |- -. 3 || 7 | 
| 21 | 5nn0 | |- 5 e. NN0 | |
| 22 | 7nn0 | |- 7 e. NN0 | |
| 23 | 7lt10 | |- 7 < ; 1 0 | |
| 24 | 3 21 22 23 | declti | |- 7 < ; 2 5 | 
| 25 | 1 2 14 20 24 | prmlem1 | |- 7 e. Prime |