Metamath Proof Explorer


Theorem 7t4e28

Description: 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 7t4e28
|- ( 7 x. 4 ) = ; 2 8

Proof

Step Hyp Ref Expression
1 7nn0
 |-  7 e. NN0
2 3nn0
 |-  3 e. NN0
3 df-4
 |-  4 = ( 3 + 1 )
4 7t3e21
 |-  ( 7 x. 3 ) = ; 2 1
5 2nn0
 |-  2 e. NN0
6 1nn0
 |-  1 e. NN0
7 eqid
 |-  ; 2 1 = ; 2 1
8 7cn
 |-  7 e. CC
9 ax-1cn
 |-  1 e. CC
10 7p1e8
 |-  ( 7 + 1 ) = 8
11 8 9 10 addcomli
 |-  ( 1 + 7 ) = 8
12 5 6 1 7 11 decaddi
 |-  ( ; 2 1 + 7 ) = ; 2 8
13 1 2 3 4 12 4t3lem
 |-  ( 7 x. 4 ) = ; 2 8