Metamath Proof Explorer


Theorem 7t7e49

Description: 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 7t7e49
|- ( 7 x. 7 ) = ; 4 9

Proof

Step Hyp Ref Expression
1 7nn0
 |-  7 e. NN0
2 6nn0
 |-  6 e. NN0
3 df-7
 |-  7 = ( 6 + 1 )
4 7t6e42
 |-  ( 7 x. 6 ) = ; 4 2
5 4nn0
 |-  4 e. NN0
6 2nn0
 |-  2 e. NN0
7 eqid
 |-  ; 4 2 = ; 4 2
8 7cn
 |-  7 e. CC
9 2cn
 |-  2 e. CC
10 7p2e9
 |-  ( 7 + 2 ) = 9
11 8 9 10 addcomli
 |-  ( 2 + 7 ) = 9
12 5 6 1 7 11 decaddi
 |-  ( ; 4 2 + 7 ) = ; 4 9
13 1 2 3 4 12 4t3lem
 |-  ( 7 x. 7 ) = ; 4 9