Metamath Proof Explorer


Theorem 8even

Description: 8 is an even number. (Contributed by AV, 23-Jul-2020)

Ref Expression
Assertion 8even
|- 8 e. Even

Proof

Step Hyp Ref Expression
1 8nn
 |-  8 e. NN
2 1 nnzi
 |-  8 e. ZZ
3 4t2e8
 |-  ( 4 x. 2 ) = 8
4 3 eqcomi
 |-  8 = ( 4 x. 2 )
5 4 oveq1i
 |-  ( 8 / 2 ) = ( ( 4 x. 2 ) / 2 )
6 4cn
 |-  4 e. CC
7 2cn
 |-  2 e. CC
8 2ne0
 |-  2 =/= 0
9 6 7 8 divcan4i
 |-  ( ( 4 x. 2 ) / 2 ) = 4
10 5 9 eqtri
 |-  ( 8 / 2 ) = 4
11 4z
 |-  4 e. ZZ
12 10 11 eqeltri
 |-  ( 8 / 2 ) e. ZZ
13 iseven
 |-  ( 8 e. Even <-> ( 8 e. ZZ /\ ( 8 / 2 ) e. ZZ ) )
14 2 12 13 mpbir2an
 |-  8 e. Even