| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							8even | 
							 |-  8 e. Even  | 
						
						
							| 2 | 
							
								
							 | 
							5prm | 
							 |-  5 e. Prime  | 
						
						
							| 3 | 
							
								
							 | 
							3prm | 
							 |-  3 e. Prime  | 
						
						
							| 4 | 
							
								
							 | 
							5odd | 
							 |-  5 e. Odd  | 
						
						
							| 5 | 
							
								
							 | 
							3odd | 
							 |-  3 e. Odd  | 
						
						
							| 6 | 
							
								
							 | 
							5p3e8 | 
							 |-  ( 5 + 3 ) = 8  | 
						
						
							| 7 | 
							
								6
							 | 
							eqcomi | 
							 |-  8 = ( 5 + 3 )  | 
						
						
							| 8 | 
							
								4 5 7
							 | 
							3pm3.2i | 
							 |-  ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							 |-  ( p = 5 -> ( p e. Odd <-> 5 e. Odd ) )  | 
						
						
							| 10 | 
							
								
							 | 
							biidd | 
							 |-  ( p = 5 -> ( q e. Odd <-> q e. Odd ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							 |-  ( p = 5 -> ( p + q ) = ( 5 + q ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqeq2d | 
							 |-  ( p = 5 -> ( 8 = ( p + q ) <-> 8 = ( 5 + q ) ) )  | 
						
						
							| 13 | 
							
								9 10 12
							 | 
							3anbi123d | 
							 |-  ( p = 5 -> ( ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) <-> ( 5 e. Odd /\ q e. Odd /\ 8 = ( 5 + q ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							biidd | 
							 |-  ( q = 3 -> ( 5 e. Odd <-> 5 e. Odd ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eleq1 | 
							 |-  ( q = 3 -> ( q e. Odd <-> 3 e. Odd ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							 |-  ( q = 3 -> ( 5 + q ) = ( 5 + 3 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqeq2d | 
							 |-  ( q = 3 -> ( 8 = ( 5 + q ) <-> 8 = ( 5 + 3 ) ) )  | 
						
						
							| 18 | 
							
								14 15 17
							 | 
							3anbi123d | 
							 |-  ( q = 3 -> ( ( 5 e. Odd /\ q e. Odd /\ 8 = ( 5 + q ) ) <-> ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) ) ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							rspc2ev | 
							 |-  ( ( 5 e. Prime /\ 3 e. Prime /\ ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) ) ) -> E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) )  | 
						
						
							| 20 | 
							
								2 3 8 19
							 | 
							mp3an | 
							 |-  E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) )  | 
						
						
							| 21 | 
							
								
							 | 
							isgbe | 
							 |-  ( 8 e. GoldbachEven <-> ( 8 e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) ) )  | 
						
						
							| 22 | 
							
								1 20 21
							 | 
							mpbir2an | 
							 |-  8 e. GoldbachEven  |