| Step |
Hyp |
Ref |
Expression |
| 1 |
|
8even |
|- 8 e. Even |
| 2 |
|
5prm |
|- 5 e. Prime |
| 3 |
|
3prm |
|- 3 e. Prime |
| 4 |
|
5odd |
|- 5 e. Odd |
| 5 |
|
3odd |
|- 3 e. Odd |
| 6 |
|
5p3e8 |
|- ( 5 + 3 ) = 8 |
| 7 |
6
|
eqcomi |
|- 8 = ( 5 + 3 ) |
| 8 |
4 5 7
|
3pm3.2i |
|- ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) ) |
| 9 |
|
eleq1 |
|- ( p = 5 -> ( p e. Odd <-> 5 e. Odd ) ) |
| 10 |
|
biidd |
|- ( p = 5 -> ( q e. Odd <-> q e. Odd ) ) |
| 11 |
|
oveq1 |
|- ( p = 5 -> ( p + q ) = ( 5 + q ) ) |
| 12 |
11
|
eqeq2d |
|- ( p = 5 -> ( 8 = ( p + q ) <-> 8 = ( 5 + q ) ) ) |
| 13 |
9 10 12
|
3anbi123d |
|- ( p = 5 -> ( ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) <-> ( 5 e. Odd /\ q e. Odd /\ 8 = ( 5 + q ) ) ) ) |
| 14 |
|
biidd |
|- ( q = 3 -> ( 5 e. Odd <-> 5 e. Odd ) ) |
| 15 |
|
eleq1 |
|- ( q = 3 -> ( q e. Odd <-> 3 e. Odd ) ) |
| 16 |
|
oveq2 |
|- ( q = 3 -> ( 5 + q ) = ( 5 + 3 ) ) |
| 17 |
16
|
eqeq2d |
|- ( q = 3 -> ( 8 = ( 5 + q ) <-> 8 = ( 5 + 3 ) ) ) |
| 18 |
14 15 17
|
3anbi123d |
|- ( q = 3 -> ( ( 5 e. Odd /\ q e. Odd /\ 8 = ( 5 + q ) ) <-> ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) ) ) ) |
| 19 |
13 18
|
rspc2ev |
|- ( ( 5 e. Prime /\ 3 e. Prime /\ ( 5 e. Odd /\ 3 e. Odd /\ 8 = ( 5 + 3 ) ) ) -> E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) ) |
| 20 |
2 3 8 19
|
mp3an |
|- E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) |
| 21 |
|
isgbe |
|- ( 8 e. GoldbachEven <-> ( 8 e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ 8 = ( p + q ) ) ) ) |
| 22 |
1 20 21
|
mpbir2an |
|- 8 e. GoldbachEven |