Metamath Proof Explorer


Theorem 8nn0

Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8nn0
|- 8 e. NN0

Proof

Step Hyp Ref Expression
1 8nn
 |-  8 e. NN
2 1 nnnn0i
 |-  8 e. NN0