Metamath Proof Explorer


Theorem 8p2e10

Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007) (Revised by Stanislas Polu, 7-Apr-2020) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion 8p2e10
|- ( 8 + 2 ) = ; 1 0

Proof

Step Hyp Ref Expression
1 df-2
 |-  2 = ( 1 + 1 )
2 1 oveq2i
 |-  ( 8 + 2 ) = ( 8 + ( 1 + 1 ) )
3 8cn
 |-  8 e. CC
4 ax-1cn
 |-  1 e. CC
5 3 4 4 addassi
 |-  ( ( 8 + 1 ) + 1 ) = ( 8 + ( 1 + 1 ) )
6 2 5 eqtr4i
 |-  ( 8 + 2 ) = ( ( 8 + 1 ) + 1 )
7 df-9
 |-  9 = ( 8 + 1 )
8 7 oveq1i
 |-  ( 9 + 1 ) = ( ( 8 + 1 ) + 1 )
9 9p1e10
 |-  ( 9 + 1 ) = ; 1 0
10 6 8 9 3eqtr2i
 |-  ( 8 + 2 ) = ; 1 0