Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
8re |
|- 8 e. RR |
3 |
2
|
recni |
|- 8 e. CC |
4 |
|
4cn |
|- 4 e. CC |
5 |
|
3cn |
|- 3 e. CC |
6 |
|
8pos |
|- 0 < 8 |
7 |
2 6
|
gt0ne0ii |
|- 8 =/= 0 |
8 |
|
3ne0 |
|- 3 =/= 0 |
9 |
1 3 4 5 7 8
|
divmuldivi |
|- ( ( 1 / 8 ) x. ( 4 / 3 ) ) = ( ( 1 x. 4 ) / ( 8 x. 3 ) ) |
10 |
1 4
|
mulcomi |
|- ( 1 x. 4 ) = ( 4 x. 1 ) |
11 |
|
2cn |
|- 2 e. CC |
12 |
4 11 5
|
mul32i |
|- ( ( 4 x. 2 ) x. 3 ) = ( ( 4 x. 3 ) x. 2 ) |
13 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
14 |
13
|
oveq1i |
|- ( ( 4 x. 2 ) x. 3 ) = ( 8 x. 3 ) |
15 |
12 14
|
eqtr3i |
|- ( ( 4 x. 3 ) x. 2 ) = ( 8 x. 3 ) |
16 |
4 5 11
|
mulassi |
|- ( ( 4 x. 3 ) x. 2 ) = ( 4 x. ( 3 x. 2 ) ) |
17 |
15 16
|
eqtr3i |
|- ( 8 x. 3 ) = ( 4 x. ( 3 x. 2 ) ) |
18 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
19 |
18
|
oveq2i |
|- ( 4 x. ( 3 x. 2 ) ) = ( 4 x. 6 ) |
20 |
17 19
|
eqtri |
|- ( 8 x. 3 ) = ( 4 x. 6 ) |
21 |
10 20
|
oveq12i |
|- ( ( 1 x. 4 ) / ( 8 x. 3 ) ) = ( ( 4 x. 1 ) / ( 4 x. 6 ) ) |
22 |
9 21
|
eqtri |
|- ( ( 1 / 8 ) x. ( 4 / 3 ) ) = ( ( 4 x. 1 ) / ( 4 x. 6 ) ) |
23 |
|
6re |
|- 6 e. RR |
24 |
23
|
recni |
|- 6 e. CC |
25 |
|
6pos |
|- 0 < 6 |
26 |
23 25
|
gt0ne0ii |
|- 6 =/= 0 |
27 |
|
4ne0 |
|- 4 =/= 0 |
28 |
|
divcan5 |
|- ( ( 1 e. CC /\ ( 6 e. CC /\ 6 =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( 4 x. 1 ) / ( 4 x. 6 ) ) = ( 1 / 6 ) ) |
29 |
1 28
|
mp3an1 |
|- ( ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( 4 x. 1 ) / ( 4 x. 6 ) ) = ( 1 / 6 ) ) |
30 |
24 26 4 27 29
|
mp4an |
|- ( ( 4 x. 1 ) / ( 4 x. 6 ) ) = ( 1 / 6 ) |
31 |
22 30
|
eqtri |
|- ( ( 1 / 8 ) x. ( 4 / 3 ) ) = ( 1 / 6 ) |