Metamath Proof Explorer


Theorem 9p1e10

Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015) (Revised by Stanislas Polu, 7-Apr-2020) (Revised by AV, 1-Aug-2021)

Ref Expression
Assertion 9p1e10
|- ( 9 + 1 ) = ; 1 0

Proof

Step Hyp Ref Expression
1 df-dec
 |-  ; 1 0 = ( ( ( 9 + 1 ) x. 1 ) + 0 )
2 9nn
 |-  9 e. NN
3 1nn
 |-  1 e. NN
4 nnaddcl
 |-  ( ( 9 e. NN /\ 1 e. NN ) -> ( 9 + 1 ) e. NN )
5 2 3 4 mp2an
 |-  ( 9 + 1 ) e. NN
6 5 nncni
 |-  ( 9 + 1 ) e. CC
7 6 mulid1i
 |-  ( ( 9 + 1 ) x. 1 ) = ( 9 + 1 )
8 7 oveq1i
 |-  ( ( ( 9 + 1 ) x. 1 ) + 0 ) = ( ( 9 + 1 ) + 0 )
9 6 addid1i
 |-  ( ( 9 + 1 ) + 0 ) = ( 9 + 1 )
10 1 8 9 3eqtrri
 |-  ( 9 + 1 ) = ; 1 0