Metamath Proof Explorer


Theorem 9p3e12

Description: 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9p3e12
|- ( 9 + 3 ) = ; 1 2

Proof

Step Hyp Ref Expression
1 9nn0
 |-  9 e. NN0
2 2nn0
 |-  2 e. NN0
3 1nn0
 |-  1 e. NN0
4 df-3
 |-  3 = ( 2 + 1 )
5 df-2
 |-  2 = ( 1 + 1 )
6 9p2e11
 |-  ( 9 + 2 ) = ; 1 1
7 1 2 3 4 5 6 6p5lem
 |-  ( 9 + 3 ) = ; 1 2