Metamath Proof Explorer


Theorem 9p5e14

Description: 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9p5e14
|- ( 9 + 5 ) = ; 1 4

Proof

Step Hyp Ref Expression
1 9nn0
 |-  9 e. NN0
2 4nn0
 |-  4 e. NN0
3 3nn0
 |-  3 e. NN0
4 df-5
 |-  5 = ( 4 + 1 )
5 df-4
 |-  4 = ( 3 + 1 )
6 9p4e13
 |-  ( 9 + 4 ) = ; 1 3
7 1 2 3 4 5 6 6p5lem
 |-  ( 9 + 5 ) = ; 1 4