Metamath Proof Explorer


Theorem 9p6e15

Description: 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9p6e15
|- ( 9 + 6 ) = ; 1 5

Proof

Step Hyp Ref Expression
1 9nn0
 |-  9 e. NN0
2 5nn0
 |-  5 e. NN0
3 4nn0
 |-  4 e. NN0
4 df-6
 |-  6 = ( 5 + 1 )
5 df-5
 |-  5 = ( 4 + 1 )
6 9p5e14
 |-  ( 9 + 5 ) = ; 1 4
7 1 2 3 4 5 6 6p5lem
 |-  ( 9 + 6 ) = ; 1 5