Metamath Proof Explorer


Theorem 9p9e18

Description: 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9p9e18
|- ( 9 + 9 ) = ; 1 8

Proof

Step Hyp Ref Expression
1 9nn0
 |-  9 e. NN0
2 8nn0
 |-  8 e. NN0
3 7nn0
 |-  7 e. NN0
4 df-9
 |-  9 = ( 8 + 1 )
5 df-8
 |-  8 = ( 7 + 1 )
6 9p8e17
 |-  ( 9 + 8 ) = ; 1 7
7 1 2 3 4 5 6 6p5lem
 |-  ( 9 + 9 ) = ; 1 8