| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 9cn |  |-  9 e. CC | 
						
							| 2 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 3 | 2 | nn0cni |  |-  ; 1 0 e. CC | 
						
							| 4 |  | ax-1cn |  |-  1 e. CC | 
						
							| 5 | 3 4 | mulcli |  |-  ( ; 1 0 x. 1 ) e. CC | 
						
							| 6 | 1 5 4 | adddii |  |-  ( 9 x. ( ( ; 1 0 x. 1 ) + 1 ) ) = ( ( 9 x. ( ; 1 0 x. 1 ) ) + ( 9 x. 1 ) ) | 
						
							| 7 | 3 | mulridi |  |-  ( ; 1 0 x. 1 ) = ; 1 0 | 
						
							| 8 | 7 | oveq2i |  |-  ( 9 x. ( ; 1 0 x. 1 ) ) = ( 9 x. ; 1 0 ) | 
						
							| 9 | 1 3 | mulcomi |  |-  ( 9 x. ; 1 0 ) = ( ; 1 0 x. 9 ) | 
						
							| 10 | 8 9 | eqtri |  |-  ( 9 x. ( ; 1 0 x. 1 ) ) = ( ; 1 0 x. 9 ) | 
						
							| 11 | 1 | mulridi |  |-  ( 9 x. 1 ) = 9 | 
						
							| 12 | 10 11 | oveq12i |  |-  ( ( 9 x. ( ; 1 0 x. 1 ) ) + ( 9 x. 1 ) ) = ( ( ; 1 0 x. 9 ) + 9 ) | 
						
							| 13 | 6 12 | eqtri |  |-  ( 9 x. ( ( ; 1 0 x. 1 ) + 1 ) ) = ( ( ; 1 0 x. 9 ) + 9 ) | 
						
							| 14 |  | dfdec10 |  |-  ; 1 1 = ( ( ; 1 0 x. 1 ) + 1 ) | 
						
							| 15 | 14 | oveq2i |  |-  ( 9 x. ; 1 1 ) = ( 9 x. ( ( ; 1 0 x. 1 ) + 1 ) ) | 
						
							| 16 |  | dfdec10 |  |-  ; 9 9 = ( ( ; 1 0 x. 9 ) + 9 ) | 
						
							| 17 | 13 15 16 | 3eqtr4i |  |-  ( 9 x. ; 1 1 ) = ; 9 9 |