| Step | Hyp | Ref | Expression | 
						
							| 1 |  | a2and.1 |  |-  ( ph -> ( ( ps /\ rh ) -> ( ta -> th ) ) ) | 
						
							| 2 |  | a2and.2 |  |-  ( ph -> ( ( ps /\ rh ) -> ch ) ) | 
						
							| 3 | 2 | expd |  |-  ( ph -> ( ps -> ( rh -> ch ) ) ) | 
						
							| 4 | 3 | imdistand |  |-  ( ph -> ( ( ps /\ rh ) -> ( ps /\ ch ) ) ) | 
						
							| 5 |  | imim1 |  |-  ( ( ( ps /\ ch ) -> ta ) -> ( ( ta -> th ) -> ( ( ps /\ ch ) -> th ) ) ) | 
						
							| 6 | 5 | com3l |  |-  ( ( ta -> th ) -> ( ( ps /\ ch ) -> ( ( ( ps /\ ch ) -> ta ) -> th ) ) ) | 
						
							| 7 | 1 4 6 | syl6c |  |-  ( ph -> ( ( ps /\ rh ) -> ( ( ( ps /\ ch ) -> ta ) -> th ) ) ) | 
						
							| 8 | 7 | com23 |  |-  ( ph -> ( ( ( ps /\ ch ) -> ta ) -> ( ( ps /\ rh ) -> th ) ) ) |