Step |
Hyp |
Ref |
Expression |
1 |
|
a2and.1 |
|- ( ph -> ( ( ps /\ rh ) -> ( ta -> th ) ) ) |
2 |
|
a2and.2 |
|- ( ph -> ( ( ps /\ rh ) -> ch ) ) |
3 |
2
|
expd |
|- ( ph -> ( ps -> ( rh -> ch ) ) ) |
4 |
3
|
imdistand |
|- ( ph -> ( ( ps /\ rh ) -> ( ps /\ ch ) ) ) |
5 |
|
imim1 |
|- ( ( ( ps /\ ch ) -> ta ) -> ( ( ta -> th ) -> ( ( ps /\ ch ) -> th ) ) ) |
6 |
5
|
com3l |
|- ( ( ta -> th ) -> ( ( ps /\ ch ) -> ( ( ( ps /\ ch ) -> ta ) -> th ) ) ) |
7 |
1 4 6
|
syl6c |
|- ( ph -> ( ( ps /\ rh ) -> ( ( ( ps /\ ch ) -> ta ) -> th ) ) ) |
8 |
7
|
com23 |
|- ( ph -> ( ( ( ps /\ ch ) -> ta ) -> ( ( ps /\ rh ) -> th ) ) ) |