Step |
Hyp |
Ref |
Expression |
1 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
2 |
1
|
adantr |
|- ( ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) -> ( * ` A ) e. CC ) |
3 |
|
fveq2 |
|- ( ( f ` A ) = 0 -> ( * ` ( f ` A ) ) = ( * ` 0 ) ) |
4 |
|
cj0 |
|- ( * ` 0 ) = 0 |
5 |
3 4
|
eqtrdi |
|- ( ( f ` A ) = 0 -> ( * ` ( f ` A ) ) = 0 ) |
6 |
|
difss |
|- ( ( Poly ` ZZ ) \ { 0p } ) C_ ( Poly ` ZZ ) |
7 |
|
zssre |
|- ZZ C_ RR |
8 |
|
ax-resscn |
|- RR C_ CC |
9 |
|
plyss |
|- ( ( ZZ C_ RR /\ RR C_ CC ) -> ( Poly ` ZZ ) C_ ( Poly ` RR ) ) |
10 |
7 8 9
|
mp2an |
|- ( Poly ` ZZ ) C_ ( Poly ` RR ) |
11 |
6 10
|
sstri |
|- ( ( Poly ` ZZ ) \ { 0p } ) C_ ( Poly ` RR ) |
12 |
11
|
sseli |
|- ( f e. ( ( Poly ` ZZ ) \ { 0p } ) -> f e. ( Poly ` RR ) ) |
13 |
|
id |
|- ( A e. CC -> A e. CC ) |
14 |
|
plyrecj |
|- ( ( f e. ( Poly ` RR ) /\ A e. CC ) -> ( * ` ( f ` A ) ) = ( f ` ( * ` A ) ) ) |
15 |
12 13 14
|
syl2anr |
|- ( ( A e. CC /\ f e. ( ( Poly ` ZZ ) \ { 0p } ) ) -> ( * ` ( f ` A ) ) = ( f ` ( * ` A ) ) ) |
16 |
15
|
eqeq1d |
|- ( ( A e. CC /\ f e. ( ( Poly ` ZZ ) \ { 0p } ) ) -> ( ( * ` ( f ` A ) ) = 0 <-> ( f ` ( * ` A ) ) = 0 ) ) |
17 |
5 16
|
syl5ib |
|- ( ( A e. CC /\ f e. ( ( Poly ` ZZ ) \ { 0p } ) ) -> ( ( f ` A ) = 0 -> ( f ` ( * ` A ) ) = 0 ) ) |
18 |
17
|
reximdva |
|- ( A e. CC -> ( E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` ( * ` A ) ) = 0 ) ) |
19 |
18
|
imp |
|- ( ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) -> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` ( * ` A ) ) = 0 ) |
20 |
2 19
|
jca |
|- ( ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) -> ( ( * ` A ) e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` ( * ` A ) ) = 0 ) ) |
21 |
|
elaa |
|- ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) |
22 |
|
elaa |
|- ( ( * ` A ) e. AA <-> ( ( * ` A ) e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` ( * ` A ) ) = 0 ) ) |
23 |
20 21 22
|
3imtr4i |
|- ( A e. AA -> ( * ` A ) e. AA ) |