Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem2.a |
|- N = ( deg ` F ) |
2 |
|
aalioulem2.b |
|- ( ph -> F e. ( Poly ` ZZ ) ) |
3 |
|
aalioulem2.c |
|- ( ph -> N e. NN ) |
4 |
|
aalioulem2.d |
|- ( ph -> A e. RR ) |
5 |
|
aalioulem3.e |
|- ( ph -> ( F ` A ) = 0 ) |
6 |
1 2 3 4 5
|
aalioulem6 |
|- ( ph -> E. a e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) |
7 |
|
rphalfcl |
|- ( a e. RR+ -> ( a / 2 ) e. RR+ ) |
8 |
7
|
adantl |
|- ( ( ph /\ a e. RR+ ) -> ( a / 2 ) e. RR+ ) |
9 |
7
|
ad2antlr |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( a / 2 ) e. RR+ ) |
10 |
|
nnrp |
|- ( q e. NN -> q e. RR+ ) |
11 |
10
|
ad2antll |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> q e. RR+ ) |
12 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
13 |
12
|
ad2antrr |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> N e. ZZ ) |
14 |
11 13
|
rpexpcld |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( q ^ N ) e. RR+ ) |
15 |
9 14
|
rpdivcld |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( a / 2 ) / ( q ^ N ) ) e. RR+ ) |
16 |
15
|
rpred |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( a / 2 ) / ( q ^ N ) ) e. RR ) |
17 |
|
simplr |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> a e. RR+ ) |
18 |
17 14
|
rpdivcld |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( a / ( q ^ N ) ) e. RR+ ) |
19 |
18
|
rpred |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( a / ( q ^ N ) ) e. RR ) |
20 |
4
|
adantr |
|- ( ( ph /\ a e. RR+ ) -> A e. RR ) |
21 |
|
znq |
|- ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. QQ ) |
22 |
|
qre |
|- ( ( p / q ) e. QQ -> ( p / q ) e. RR ) |
23 |
21 22
|
syl |
|- ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. RR ) |
24 |
|
resubcl |
|- ( ( A e. RR /\ ( p / q ) e. RR ) -> ( A - ( p / q ) ) e. RR ) |
25 |
20 23 24
|
syl2an |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( A - ( p / q ) ) e. RR ) |
26 |
25
|
recnd |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( A - ( p / q ) ) e. CC ) |
27 |
26
|
abscld |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( abs ` ( A - ( p / q ) ) ) e. RR ) |
28 |
16 19 27
|
3jca |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( ( a / 2 ) / ( q ^ N ) ) e. RR /\ ( a / ( q ^ N ) ) e. RR /\ ( abs ` ( A - ( p / q ) ) ) e. RR ) ) |
29 |
9
|
rpred |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( a / 2 ) e. RR ) |
30 |
|
rpre |
|- ( a e. RR+ -> a e. RR ) |
31 |
30
|
ad2antlr |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> a e. RR ) |
32 |
|
rphalflt |
|- ( a e. RR+ -> ( a / 2 ) < a ) |
33 |
32
|
ad2antlr |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( a / 2 ) < a ) |
34 |
29 31 14 33
|
ltdiv1dd |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( a / 2 ) / ( q ^ N ) ) < ( a / ( q ^ N ) ) ) |
35 |
34
|
anim1i |
|- ( ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( ( ( a / 2 ) / ( q ^ N ) ) < ( a / ( q ^ N ) ) /\ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) |
36 |
35
|
ex |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) -> ( ( ( a / 2 ) / ( q ^ N ) ) < ( a / ( q ^ N ) ) /\ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) |
37 |
|
ltletr |
|- ( ( ( ( a / 2 ) / ( q ^ N ) ) e. RR /\ ( a / ( q ^ N ) ) e. RR /\ ( abs ` ( A - ( p / q ) ) ) e. RR ) -> ( ( ( ( a / 2 ) / ( q ^ N ) ) < ( a / ( q ^ N ) ) /\ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( ( a / 2 ) / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
38 |
28 36 37
|
sylsyld |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) -> ( ( a / 2 ) / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
39 |
38
|
orim2d |
|- ( ( ( ph /\ a e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( A = ( p / q ) \/ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( A = ( p / q ) \/ ( ( a / 2 ) / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
40 |
39
|
ralimdvva |
|- ( ( ph /\ a e. RR+ ) -> ( A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) -> A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( ( a / 2 ) / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
41 |
|
oveq1 |
|- ( x = ( a / 2 ) -> ( x / ( q ^ N ) ) = ( ( a / 2 ) / ( q ^ N ) ) ) |
42 |
41
|
breq1d |
|- ( x = ( a / 2 ) -> ( ( x / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) <-> ( ( a / 2 ) / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
43 |
42
|
orbi2d |
|- ( x = ( a / 2 ) -> ( ( A = ( p / q ) \/ ( x / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) <-> ( A = ( p / q ) \/ ( ( a / 2 ) / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
44 |
43
|
2ralbidv |
|- ( x = ( a / 2 ) -> ( A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) <-> A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( ( a / 2 ) / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
45 |
44
|
rspcev |
|- ( ( ( a / 2 ) e. RR+ /\ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( ( a / 2 ) / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
46 |
8 40 45
|
syl6an |
|- ( ( ph /\ a e. RR+ ) -> ( A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
47 |
46
|
rexlimdva |
|- ( ph -> ( E. a e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( a / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
48 |
6 47
|
mpd |
|- ( ph -> E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ N ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |