Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( A e. ( AA i^i RR ) <-> ( A e. AA /\ A e. RR ) ) |
2 |
|
elaa |
|- ( A e. AA <-> ( A e. CC /\ E. a e. ( ( Poly ` ZZ ) \ { 0p } ) ( a ` A ) = 0 ) ) |
3 |
|
eldifn |
|- ( a e. ( ( Poly ` ZZ ) \ { 0p } ) -> -. a e. { 0p } ) |
4 |
3
|
3ad2ant1 |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> -. a e. { 0p } ) |
5 |
|
simpr |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> a = ( CC X. { ( a ` 0 ) } ) ) |
6 |
|
fveq1 |
|- ( a = ( CC X. { ( a ` 0 ) } ) -> ( a ` A ) = ( ( CC X. { ( a ` 0 ) } ) ` A ) ) |
7 |
6
|
adantl |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( a ` A ) = ( ( CC X. { ( a ` 0 ) } ) ` A ) ) |
8 |
|
simpl2 |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( a ` A ) = 0 ) |
9 |
|
simpl3 |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> A e. RR ) |
10 |
9
|
recnd |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> A e. CC ) |
11 |
|
fvex |
|- ( a ` 0 ) e. _V |
12 |
11
|
fvconst2 |
|- ( A e. CC -> ( ( CC X. { ( a ` 0 ) } ) ` A ) = ( a ` 0 ) ) |
13 |
10 12
|
syl |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( ( CC X. { ( a ` 0 ) } ) ` A ) = ( a ` 0 ) ) |
14 |
7 8 13
|
3eqtr3rd |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( a ` 0 ) = 0 ) |
15 |
14
|
sneqd |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> { ( a ` 0 ) } = { 0 } ) |
16 |
15
|
xpeq2d |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> ( CC X. { ( a ` 0 ) } ) = ( CC X. { 0 } ) ) |
17 |
5 16
|
eqtrd |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> a = ( CC X. { 0 } ) ) |
18 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
19 |
17 18
|
eqtr4di |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> a = 0p ) |
20 |
|
velsn |
|- ( a e. { 0p } <-> a = 0p ) |
21 |
19 20
|
sylibr |
|- ( ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) /\ a = ( CC X. { ( a ` 0 ) } ) ) -> a e. { 0p } ) |
22 |
4 21
|
mtand |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> -. a = ( CC X. { ( a ` 0 ) } ) ) |
23 |
|
eldifi |
|- ( a e. ( ( Poly ` ZZ ) \ { 0p } ) -> a e. ( Poly ` ZZ ) ) |
24 |
23
|
3ad2ant1 |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> a e. ( Poly ` ZZ ) ) |
25 |
|
0dgrb |
|- ( a e. ( Poly ` ZZ ) -> ( ( deg ` a ) = 0 <-> a = ( CC X. { ( a ` 0 ) } ) ) ) |
26 |
24 25
|
syl |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( ( deg ` a ) = 0 <-> a = ( CC X. { ( a ` 0 ) } ) ) ) |
27 |
22 26
|
mtbird |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> -. ( deg ` a ) = 0 ) |
28 |
|
dgrcl |
|- ( a e. ( Poly ` ZZ ) -> ( deg ` a ) e. NN0 ) |
29 |
24 28
|
syl |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( deg ` a ) e. NN0 ) |
30 |
|
elnn0 |
|- ( ( deg ` a ) e. NN0 <-> ( ( deg ` a ) e. NN \/ ( deg ` a ) = 0 ) ) |
31 |
29 30
|
sylib |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( ( deg ` a ) e. NN \/ ( deg ` a ) = 0 ) ) |
32 |
|
orel2 |
|- ( -. ( deg ` a ) = 0 -> ( ( ( deg ` a ) e. NN \/ ( deg ` a ) = 0 ) -> ( deg ` a ) e. NN ) ) |
33 |
27 31 32
|
sylc |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( deg ` a ) e. NN ) |
34 |
|
eqid |
|- ( deg ` a ) = ( deg ` a ) |
35 |
|
simp3 |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> A e. RR ) |
36 |
|
simp2 |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> ( a ` A ) = 0 ) |
37 |
34 24 33 35 36
|
aaliou |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
38 |
|
oveq2 |
|- ( k = ( deg ` a ) -> ( q ^ k ) = ( q ^ ( deg ` a ) ) ) |
39 |
38
|
oveq2d |
|- ( k = ( deg ` a ) -> ( x / ( q ^ k ) ) = ( x / ( q ^ ( deg ` a ) ) ) ) |
40 |
39
|
breq1d |
|- ( k = ( deg ` a ) -> ( ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) <-> ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
41 |
40
|
orbi2d |
|- ( k = ( deg ` a ) -> ( ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) <-> ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
42 |
41
|
2ralbidv |
|- ( k = ( deg ` a ) -> ( A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) <-> A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
43 |
42
|
rexbidv |
|- ( k = ( deg ` a ) -> ( E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) <-> E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
44 |
43
|
rspcev |
|- ( ( ( deg ` a ) e. NN /\ E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ ( deg ` a ) ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
45 |
33 37 44
|
syl2anc |
|- ( ( a e. ( ( Poly ` ZZ ) \ { 0p } ) /\ ( a ` A ) = 0 /\ A e. RR ) -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
46 |
45
|
3exp |
|- ( a e. ( ( Poly ` ZZ ) \ { 0p } ) -> ( ( a ` A ) = 0 -> ( A e. RR -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) ) |
47 |
46
|
rexlimiv |
|- ( E. a e. ( ( Poly ` ZZ ) \ { 0p } ) ( a ` A ) = 0 -> ( A e. RR -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
48 |
2 47
|
simplbiim |
|- ( A e. AA -> ( A e. RR -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) ) |
49 |
48
|
imp |
|- ( ( A e. AA /\ A e. RR ) -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |
50 |
1 49
|
sylbi |
|- ( A e. ( AA i^i RR ) -> E. k e. NN E. x e. RR+ A. p e. ZZ A. q e. NN ( A = ( p / q ) \/ ( x / ( q ^ k ) ) < ( abs ` ( A - ( p / q ) ) ) ) ) |