| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.a |  |-  G = ( c e. ( ZZ>= ` A ) |-> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) ) | 
						
							| 2 |  | oveq1 |  |-  ( c = B -> ( c - A ) = ( B - A ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( c = B -> ( ( 1 / 2 ) ^ ( c - A ) ) = ( ( 1 / 2 ) ^ ( B - A ) ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( c = B -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) ) | 
						
							| 5 |  | ovex |  |-  ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) e. _V | 
						
							| 6 | 4 1 5 | fvmpt |  |-  ( B e. ( ZZ>= ` A ) -> ( G ` B ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( G ` B ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) ) | 
						
							| 8 |  | 2rp |  |-  2 e. RR+ | 
						
							| 9 |  | simpl |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> A e. NN ) | 
						
							| 10 | 9 | nnnn0d |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> A e. NN0 ) | 
						
							| 11 | 10 | faccld |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ! ` A ) e. NN ) | 
						
							| 12 | 11 | nnzd |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ! ` A ) e. ZZ ) | 
						
							| 13 | 12 | znegcld |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> -u ( ! ` A ) e. ZZ ) | 
						
							| 14 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ -u ( ! ` A ) e. ZZ ) -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) | 
						
							| 15 | 8 13 14 | sylancr |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) | 
						
							| 16 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 17 |  | halfgt0 |  |-  0 < ( 1 / 2 ) | 
						
							| 18 | 16 17 | elrpii |  |-  ( 1 / 2 ) e. RR+ | 
						
							| 19 |  | eluzelz |  |-  ( B e. ( ZZ>= ` A ) -> B e. ZZ ) | 
						
							| 20 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 21 |  | zsubcl |  |-  ( ( B e. ZZ /\ A e. ZZ ) -> ( B - A ) e. ZZ ) | 
						
							| 22 | 19 20 21 | syl2anr |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( B - A ) e. ZZ ) | 
						
							| 23 |  | rpexpcl |  |-  ( ( ( 1 / 2 ) e. RR+ /\ ( B - A ) e. ZZ ) -> ( ( 1 / 2 ) ^ ( B - A ) ) e. RR+ ) | 
						
							| 24 | 18 22 23 | sylancr |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ( 1 / 2 ) ^ ( B - A ) ) e. RR+ ) | 
						
							| 25 | 15 24 | rpmulcld |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) e. RR+ ) | 
						
							| 26 | 25 | rpred |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) e. RR ) | 
						
							| 27 | 7 26 | eqeltrd |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( G ` B ) e. RR ) |