Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.a |
|- G = ( c e. ( ZZ>= ` A ) |-> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) ) |
2 |
|
oveq1 |
|- ( c = B -> ( c - A ) = ( B - A ) ) |
3 |
2
|
oveq2d |
|- ( c = B -> ( ( 1 / 2 ) ^ ( c - A ) ) = ( ( 1 / 2 ) ^ ( B - A ) ) ) |
4 |
3
|
oveq2d |
|- ( c = B -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) ) |
5 |
|
ovex |
|- ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) e. _V |
6 |
4 1 5
|
fvmpt |
|- ( B e. ( ZZ>= ` A ) -> ( G ` B ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) ) |
7 |
6
|
adantl |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( G ` B ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) ) |
8 |
|
2rp |
|- 2 e. RR+ |
9 |
|
simpl |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> A e. NN ) |
10 |
9
|
nnnn0d |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> A e. NN0 ) |
11 |
10
|
faccld |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ! ` A ) e. NN ) |
12 |
11
|
nnzd |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ! ` A ) e. ZZ ) |
13 |
12
|
znegcld |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> -u ( ! ` A ) e. ZZ ) |
14 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ -u ( ! ` A ) e. ZZ ) -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) |
15 |
8 13 14
|
sylancr |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) |
16 |
|
halfre |
|- ( 1 / 2 ) e. RR |
17 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
18 |
16 17
|
elrpii |
|- ( 1 / 2 ) e. RR+ |
19 |
|
eluzelz |
|- ( B e. ( ZZ>= ` A ) -> B e. ZZ ) |
20 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
21 |
|
zsubcl |
|- ( ( B e. ZZ /\ A e. ZZ ) -> ( B - A ) e. ZZ ) |
22 |
19 20 21
|
syl2anr |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( B - A ) e. ZZ ) |
23 |
|
rpexpcl |
|- ( ( ( 1 / 2 ) e. RR+ /\ ( B - A ) e. ZZ ) -> ( ( 1 / 2 ) ^ ( B - A ) ) e. RR+ ) |
24 |
18 22 23
|
sylancr |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ( 1 / 2 ) ^ ( B - A ) ) e. RR+ ) |
25 |
15 24
|
rpmulcld |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) e. RR+ ) |
26 |
25
|
rpred |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( B - A ) ) ) e. RR ) |
27 |
7 26
|
eqeltrd |
|- ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( G ` B ) e. RR ) |