| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.a |  |-  G = ( c e. ( ZZ>= ` A ) |-> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) ) | 
						
							| 2 |  | aaliou3lem.b |  |-  F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) | 
						
							| 3 |  | eluznn |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> B e. NN ) | 
						
							| 4 |  | fveq2 |  |-  ( a = B -> ( ! ` a ) = ( ! ` B ) ) | 
						
							| 5 | 4 | negeqd |  |-  ( a = B -> -u ( ! ` a ) = -u ( ! ` B ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( a = B -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` B ) ) ) | 
						
							| 7 |  | ovex |  |-  ( 2 ^ -u ( ! ` B ) ) e. _V | 
						
							| 8 | 6 2 7 | fvmpt |  |-  ( B e. NN -> ( F ` B ) = ( 2 ^ -u ( ! ` B ) ) ) | 
						
							| 9 | 3 8 | syl |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( F ` B ) = ( 2 ^ -u ( ! ` B ) ) ) | 
						
							| 10 |  | 2rp |  |-  2 e. RR+ | 
						
							| 11 | 3 | nnnn0d |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> B e. NN0 ) | 
						
							| 12 | 11 | faccld |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ! ` B ) e. NN ) | 
						
							| 13 | 12 | nnzd |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ! ` B ) e. ZZ ) | 
						
							| 14 | 13 | znegcld |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> -u ( ! ` B ) e. ZZ ) | 
						
							| 15 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ -u ( ! ` B ) e. ZZ ) -> ( 2 ^ -u ( ! ` B ) ) e. RR+ ) | 
						
							| 16 | 10 14 15 | sylancr |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` B ) ) e. RR+ ) | 
						
							| 17 | 9 16 | eqeltrd |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( F ` B ) e. RR+ ) | 
						
							| 18 | 17 | rpred |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( F ` B ) e. RR ) | 
						
							| 19 | 17 | rpgt0d |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> 0 < ( F ` B ) ) | 
						
							| 20 |  | fveq2 |  |-  ( b = A -> ( F ` b ) = ( F ` A ) ) | 
						
							| 21 |  | fveq2 |  |-  ( b = A -> ( G ` b ) = ( G ` A ) ) | 
						
							| 22 | 20 21 | breq12d |  |-  ( b = A -> ( ( F ` b ) <_ ( G ` b ) <-> ( F ` A ) <_ ( G ` A ) ) ) | 
						
							| 23 | 22 | imbi2d |  |-  ( b = A -> ( ( A e. NN -> ( F ` b ) <_ ( G ` b ) ) <-> ( A e. NN -> ( F ` A ) <_ ( G ` A ) ) ) ) | 
						
							| 24 |  | fveq2 |  |-  ( b = d -> ( F ` b ) = ( F ` d ) ) | 
						
							| 25 |  | fveq2 |  |-  ( b = d -> ( G ` b ) = ( G ` d ) ) | 
						
							| 26 | 24 25 | breq12d |  |-  ( b = d -> ( ( F ` b ) <_ ( G ` b ) <-> ( F ` d ) <_ ( G ` d ) ) ) | 
						
							| 27 | 26 | imbi2d |  |-  ( b = d -> ( ( A e. NN -> ( F ` b ) <_ ( G ` b ) ) <-> ( A e. NN -> ( F ` d ) <_ ( G ` d ) ) ) ) | 
						
							| 28 |  | fveq2 |  |-  ( b = ( d + 1 ) -> ( F ` b ) = ( F ` ( d + 1 ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( b = ( d + 1 ) -> ( G ` b ) = ( G ` ( d + 1 ) ) ) | 
						
							| 30 | 28 29 | breq12d |  |-  ( b = ( d + 1 ) -> ( ( F ` b ) <_ ( G ` b ) <-> ( F ` ( d + 1 ) ) <_ ( G ` ( d + 1 ) ) ) ) | 
						
							| 31 | 30 | imbi2d |  |-  ( b = ( d + 1 ) -> ( ( A e. NN -> ( F ` b ) <_ ( G ` b ) ) <-> ( A e. NN -> ( F ` ( d + 1 ) ) <_ ( G ` ( d + 1 ) ) ) ) ) | 
						
							| 32 |  | fveq2 |  |-  ( b = B -> ( F ` b ) = ( F ` B ) ) | 
						
							| 33 |  | fveq2 |  |-  ( b = B -> ( G ` b ) = ( G ` B ) ) | 
						
							| 34 | 32 33 | breq12d |  |-  ( b = B -> ( ( F ` b ) <_ ( G ` b ) <-> ( F ` B ) <_ ( G ` B ) ) ) | 
						
							| 35 | 34 | imbi2d |  |-  ( b = B -> ( ( A e. NN -> ( F ` b ) <_ ( G ` b ) ) <-> ( A e. NN -> ( F ` B ) <_ ( G ` B ) ) ) ) | 
						
							| 36 |  | nnnn0 |  |-  ( A e. NN -> A e. NN0 ) | 
						
							| 37 | 36 | faccld |  |-  ( A e. NN -> ( ! ` A ) e. NN ) | 
						
							| 38 | 37 | nnzd |  |-  ( A e. NN -> ( ! ` A ) e. ZZ ) | 
						
							| 39 | 38 | znegcld |  |-  ( A e. NN -> -u ( ! ` A ) e. ZZ ) | 
						
							| 40 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ -u ( ! ` A ) e. ZZ ) -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) | 
						
							| 41 | 10 39 40 | sylancr |  |-  ( A e. NN -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) | 
						
							| 42 | 41 | rpred |  |-  ( A e. NN -> ( 2 ^ -u ( ! ` A ) ) e. RR ) | 
						
							| 43 | 42 | leidd |  |-  ( A e. NN -> ( 2 ^ -u ( ! ` A ) ) <_ ( 2 ^ -u ( ! ` A ) ) ) | 
						
							| 44 |  | nncn |  |-  ( A e. NN -> A e. CC ) | 
						
							| 45 | 44 | subidd |  |-  ( A e. NN -> ( A - A ) = 0 ) | 
						
							| 46 | 45 | oveq2d |  |-  ( A e. NN -> ( ( 1 / 2 ) ^ ( A - A ) ) = ( ( 1 / 2 ) ^ 0 ) ) | 
						
							| 47 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 48 |  | exp0 |  |-  ( ( 1 / 2 ) e. CC -> ( ( 1 / 2 ) ^ 0 ) = 1 ) | 
						
							| 49 | 47 48 | ax-mp |  |-  ( ( 1 / 2 ) ^ 0 ) = 1 | 
						
							| 50 | 46 49 | eqtrdi |  |-  ( A e. NN -> ( ( 1 / 2 ) ^ ( A - A ) ) = 1 ) | 
						
							| 51 | 50 | oveq2d |  |-  ( A e. NN -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( A - A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. 1 ) ) | 
						
							| 52 | 41 | rpcnd |  |-  ( A e. NN -> ( 2 ^ -u ( ! ` A ) ) e. CC ) | 
						
							| 53 | 52 | mulridd |  |-  ( A e. NN -> ( ( 2 ^ -u ( ! ` A ) ) x. 1 ) = ( 2 ^ -u ( ! ` A ) ) ) | 
						
							| 54 | 51 53 | eqtrd |  |-  ( A e. NN -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( A - A ) ) ) = ( 2 ^ -u ( ! ` A ) ) ) | 
						
							| 55 | 43 54 | breqtrrd |  |-  ( A e. NN -> ( 2 ^ -u ( ! ` A ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( A - A ) ) ) ) | 
						
							| 56 |  | fveq2 |  |-  ( a = A -> ( ! ` a ) = ( ! ` A ) ) | 
						
							| 57 | 56 | negeqd |  |-  ( a = A -> -u ( ! ` a ) = -u ( ! ` A ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( a = A -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` A ) ) ) | 
						
							| 59 |  | ovex |  |-  ( 2 ^ -u ( ! ` A ) ) e. _V | 
						
							| 60 | 58 2 59 | fvmpt |  |-  ( A e. NN -> ( F ` A ) = ( 2 ^ -u ( ! ` A ) ) ) | 
						
							| 61 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 62 |  | uzid |  |-  ( A e. ZZ -> A e. ( ZZ>= ` A ) ) | 
						
							| 63 |  | oveq1 |  |-  ( c = A -> ( c - A ) = ( A - A ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( c = A -> ( ( 1 / 2 ) ^ ( c - A ) ) = ( ( 1 / 2 ) ^ ( A - A ) ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( c = A -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( A - A ) ) ) ) | 
						
							| 66 |  | ovex |  |-  ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( A - A ) ) ) e. _V | 
						
							| 67 | 65 1 66 | fvmpt |  |-  ( A e. ( ZZ>= ` A ) -> ( G ` A ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( A - A ) ) ) ) | 
						
							| 68 | 61 62 67 | 3syl |  |-  ( A e. NN -> ( G ` A ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( A - A ) ) ) ) | 
						
							| 69 | 55 60 68 | 3brtr4d |  |-  ( A e. NN -> ( F ` A ) <_ ( G ` A ) ) | 
						
							| 70 |  | eluznn |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> d e. NN ) | 
						
							| 71 | 70 | nnnn0d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> d e. NN0 ) | 
						
							| 72 | 71 | faccld |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ! ` d ) e. NN ) | 
						
							| 73 | 72 | nnzd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ! ` d ) e. ZZ ) | 
						
							| 74 | 73 | znegcld |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> -u ( ! ` d ) e. ZZ ) | 
						
							| 75 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ -u ( ! ` d ) e. ZZ ) -> ( 2 ^ -u ( ! ` d ) ) e. RR+ ) | 
						
							| 76 | 10 74 75 | sylancr |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` d ) ) e. RR+ ) | 
						
							| 77 | 76 | rpred |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` d ) ) e. RR ) | 
						
							| 78 | 76 | rpge0d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> 0 <_ ( 2 ^ -u ( ! ` d ) ) ) | 
						
							| 79 |  | simpl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> A e. NN ) | 
						
							| 80 | 79 | nnnn0d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> A e. NN0 ) | 
						
							| 81 | 80 | faccld |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ! ` A ) e. NN ) | 
						
							| 82 | 81 | nnzd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ! ` A ) e. ZZ ) | 
						
							| 83 | 82 | znegcld |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> -u ( ! ` A ) e. ZZ ) | 
						
							| 84 | 10 83 40 | sylancr |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) | 
						
							| 85 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 86 |  | halfgt0 |  |-  0 < ( 1 / 2 ) | 
						
							| 87 | 85 86 | elrpii |  |-  ( 1 / 2 ) e. RR+ | 
						
							| 88 |  | eluzelz |  |-  ( d e. ( ZZ>= ` A ) -> d e. ZZ ) | 
						
							| 89 |  | zsubcl |  |-  ( ( d e. ZZ /\ A e. ZZ ) -> ( d - A ) e. ZZ ) | 
						
							| 90 | 88 61 89 | syl2anr |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( d - A ) e. ZZ ) | 
						
							| 91 |  | rpexpcl |  |-  ( ( ( 1 / 2 ) e. RR+ /\ ( d - A ) e. ZZ ) -> ( ( 1 / 2 ) ^ ( d - A ) ) e. RR+ ) | 
						
							| 92 | 87 90 91 | sylancr |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 1 / 2 ) ^ ( d - A ) ) e. RR+ ) | 
						
							| 93 | 84 92 | rpmulcld |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) e. RR+ ) | 
						
							| 94 | 93 | rpred |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) e. RR ) | 
						
							| 95 | 77 78 94 | jca31 |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( ( 2 ^ -u ( ! ` d ) ) e. RR /\ 0 <_ ( 2 ^ -u ( ! ` d ) ) ) /\ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) e. RR ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) /\ ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) -> ( ( ( 2 ^ -u ( ! ` d ) ) e. RR /\ 0 <_ ( 2 ^ -u ( ! ` d ) ) ) /\ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) e. RR ) ) | 
						
							| 97 | 88 | adantl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> d e. ZZ ) | 
						
							| 98 | 74 97 | zmulcld |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u ( ! ` d ) x. d ) e. ZZ ) | 
						
							| 99 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ ( -u ( ! ` d ) x. d ) e. ZZ ) -> ( 2 ^ ( -u ( ! ` d ) x. d ) ) e. RR+ ) | 
						
							| 100 | 10 98 99 | sylancr |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ ( -u ( ! ` d ) x. d ) ) e. RR+ ) | 
						
							| 101 | 100 | rpred |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ ( -u ( ! ` d ) x. d ) ) e. RR ) | 
						
							| 102 | 100 | rpge0d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> 0 <_ ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) | 
						
							| 103 | 85 | a1i |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 1 / 2 ) e. RR ) | 
						
							| 104 | 101 102 103 | jca31 |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( ( 2 ^ ( -u ( ! ` d ) x. d ) ) e. RR /\ 0 <_ ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) /\ ( 1 / 2 ) e. RR ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) /\ ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) -> ( ( ( 2 ^ ( -u ( ! ` d ) x. d ) ) e. RR /\ 0 <_ ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) /\ ( 1 / 2 ) e. RR ) ) | 
						
							| 106 |  | simpr |  |-  ( ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) /\ ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) -> ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) | 
						
							| 107 |  | 2re |  |-  2 e. RR | 
						
							| 108 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 109 | 72 | nncnd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ! ` d ) e. CC ) | 
						
							| 110 | 97 | zcnd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> d e. CC ) | 
						
							| 111 | 109 110 | mulneg1d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u ( ! ` d ) x. d ) = -u ( ( ! ` d ) x. d ) ) | 
						
							| 112 | 72 70 | nnmulcld |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( ! ` d ) x. d ) e. NN ) | 
						
							| 113 | 112 | nnge1d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> 1 <_ ( ( ! ` d ) x. d ) ) | 
						
							| 114 |  | 1re |  |-  1 e. RR | 
						
							| 115 | 112 | nnred |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( ! ` d ) x. d ) e. RR ) | 
						
							| 116 |  | leneg |  |-  ( ( 1 e. RR /\ ( ( ! ` d ) x. d ) e. RR ) -> ( 1 <_ ( ( ! ` d ) x. d ) <-> -u ( ( ! ` d ) x. d ) <_ -u 1 ) ) | 
						
							| 117 | 114 115 116 | sylancr |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 1 <_ ( ( ! ` d ) x. d ) <-> -u ( ( ! ` d ) x. d ) <_ -u 1 ) ) | 
						
							| 118 | 113 117 | mpbid |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> -u ( ( ! ` d ) x. d ) <_ -u 1 ) | 
						
							| 119 | 111 118 | eqbrtrd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u ( ! ` d ) x. d ) <_ -u 1 ) | 
						
							| 120 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 121 |  | eluz |  |-  ( ( ( -u ( ! ` d ) x. d ) e. ZZ /\ -u 1 e. ZZ ) -> ( -u 1 e. ( ZZ>= ` ( -u ( ! ` d ) x. d ) ) <-> ( -u ( ! ` d ) x. d ) <_ -u 1 ) ) | 
						
							| 122 | 98 120 121 | sylancl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u 1 e. ( ZZ>= ` ( -u ( ! ` d ) x. d ) ) <-> ( -u ( ! ` d ) x. d ) <_ -u 1 ) ) | 
						
							| 123 | 119 122 | mpbird |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> -u 1 e. ( ZZ>= ` ( -u ( ! ` d ) x. d ) ) ) | 
						
							| 124 |  | leexp2a |  |-  ( ( 2 e. RR /\ 1 <_ 2 /\ -u 1 e. ( ZZ>= ` ( -u ( ! ` d ) x. d ) ) ) -> ( 2 ^ ( -u ( ! ` d ) x. d ) ) <_ ( 2 ^ -u 1 ) ) | 
						
							| 125 | 107 108 123 124 | mp3an12i |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ ( -u ( ! ` d ) x. d ) ) <_ ( 2 ^ -u 1 ) ) | 
						
							| 126 |  | 2cn |  |-  2 e. CC | 
						
							| 127 |  | expn1 |  |-  ( 2 e. CC -> ( 2 ^ -u 1 ) = ( 1 / 2 ) ) | 
						
							| 128 | 126 127 | ax-mp |  |-  ( 2 ^ -u 1 ) = ( 1 / 2 ) | 
						
							| 129 | 125 128 | breqtrdi |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ ( -u ( ! ` d ) x. d ) ) <_ ( 1 / 2 ) ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) /\ ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) -> ( 2 ^ ( -u ( ! ` d ) x. d ) ) <_ ( 1 / 2 ) ) | 
						
							| 131 |  | lemul12a |  |-  ( ( ( ( ( 2 ^ -u ( ! ` d ) ) e. RR /\ 0 <_ ( 2 ^ -u ( ! ` d ) ) ) /\ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) e. RR ) /\ ( ( ( 2 ^ ( -u ( ! ` d ) x. d ) ) e. RR /\ 0 <_ ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) /\ ( 1 / 2 ) e. RR ) ) -> ( ( ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) /\ ( 2 ^ ( -u ( ! ` d ) x. d ) ) <_ ( 1 / 2 ) ) -> ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) <_ ( ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) x. ( 1 / 2 ) ) ) ) | 
						
							| 132 | 131 | 3impia |  |-  ( ( ( ( ( 2 ^ -u ( ! ` d ) ) e. RR /\ 0 <_ ( 2 ^ -u ( ! ` d ) ) ) /\ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) e. RR ) /\ ( ( ( 2 ^ ( -u ( ! ` d ) x. d ) ) e. RR /\ 0 <_ ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) /\ ( 1 / 2 ) e. RR ) /\ ( ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) /\ ( 2 ^ ( -u ( ! ` d ) x. d ) ) <_ ( 1 / 2 ) ) ) -> ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) <_ ( ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) x. ( 1 / 2 ) ) ) | 
						
							| 133 | 96 105 106 130 132 | syl112anc |  |-  ( ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) /\ ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) -> ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) <_ ( ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) x. ( 1 / 2 ) ) ) | 
						
							| 134 | 133 | ex |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) -> ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) <_ ( ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) x. ( 1 / 2 ) ) ) ) | 
						
							| 135 |  | facp1 |  |-  ( d e. NN0 -> ( ! ` ( d + 1 ) ) = ( ( ! ` d ) x. ( d + 1 ) ) ) | 
						
							| 136 | 71 135 | syl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ! ` ( d + 1 ) ) = ( ( ! ` d ) x. ( d + 1 ) ) ) | 
						
							| 137 | 136 | negeqd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> -u ( ! ` ( d + 1 ) ) = -u ( ( ! ` d ) x. ( d + 1 ) ) ) | 
						
							| 138 |  | ax-1cn |  |-  1 e. CC | 
						
							| 139 |  | addcom |  |-  ( ( d e. CC /\ 1 e. CC ) -> ( d + 1 ) = ( 1 + d ) ) | 
						
							| 140 | 110 138 139 | sylancl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( d + 1 ) = ( 1 + d ) ) | 
						
							| 141 | 140 | oveq2d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u ( ! ` d ) x. ( d + 1 ) ) = ( -u ( ! ` d ) x. ( 1 + d ) ) ) | 
						
							| 142 |  | peano2cn |  |-  ( d e. CC -> ( d + 1 ) e. CC ) | 
						
							| 143 | 110 142 | syl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( d + 1 ) e. CC ) | 
						
							| 144 | 109 143 | mulneg1d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u ( ! ` d ) x. ( d + 1 ) ) = -u ( ( ! ` d ) x. ( d + 1 ) ) ) | 
						
							| 145 | 74 | zcnd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> -u ( ! ` d ) e. CC ) | 
						
							| 146 |  | 1cnd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> 1 e. CC ) | 
						
							| 147 | 145 146 110 | adddid |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u ( ! ` d ) x. ( 1 + d ) ) = ( ( -u ( ! ` d ) x. 1 ) + ( -u ( ! ` d ) x. d ) ) ) | 
						
							| 148 | 145 | mulridd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u ( ! ` d ) x. 1 ) = -u ( ! ` d ) ) | 
						
							| 149 | 148 | oveq1d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( -u ( ! ` d ) x. 1 ) + ( -u ( ! ` d ) x. d ) ) = ( -u ( ! ` d ) + ( -u ( ! ` d ) x. d ) ) ) | 
						
							| 150 | 147 149 | eqtrd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( -u ( ! ` d ) x. ( 1 + d ) ) = ( -u ( ! ` d ) + ( -u ( ! ` d ) x. d ) ) ) | 
						
							| 151 | 141 144 150 | 3eqtr3d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> -u ( ( ! ` d ) x. ( d + 1 ) ) = ( -u ( ! ` d ) + ( -u ( ! ` d ) x. d ) ) ) | 
						
							| 152 | 137 151 | eqtrd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> -u ( ! ` ( d + 1 ) ) = ( -u ( ! ` d ) + ( -u ( ! ` d ) x. d ) ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` ( d + 1 ) ) ) = ( 2 ^ ( -u ( ! ` d ) + ( -u ( ! ` d ) x. d ) ) ) ) | 
						
							| 154 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 155 |  | expaddz |  |-  ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( -u ( ! ` d ) e. ZZ /\ ( -u ( ! ` d ) x. d ) e. ZZ ) ) -> ( 2 ^ ( -u ( ! ` d ) + ( -u ( ! ` d ) x. d ) ) ) = ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) ) | 
						
							| 156 | 154 155 | mpan |  |-  ( ( -u ( ! ` d ) e. ZZ /\ ( -u ( ! ` d ) x. d ) e. ZZ ) -> ( 2 ^ ( -u ( ! ` d ) + ( -u ( ! ` d ) x. d ) ) ) = ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) ) | 
						
							| 157 | 74 98 156 | syl2anc |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ ( -u ( ! ` d ) + ( -u ( ! ` d ) x. d ) ) ) = ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) ) | 
						
							| 158 | 153 157 | eqtrd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` ( d + 1 ) ) ) = ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) ) | 
						
							| 159 | 44 | adantr |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> A e. CC ) | 
						
							| 160 | 110 146 159 | addsubd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( d + 1 ) - A ) = ( ( d - A ) + 1 ) ) | 
						
							| 161 | 160 | oveq2d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) = ( ( 1 / 2 ) ^ ( ( d - A ) + 1 ) ) ) | 
						
							| 162 |  | uznn0sub |  |-  ( d e. ( ZZ>= ` A ) -> ( d - A ) e. NN0 ) | 
						
							| 163 | 162 | adantl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( d - A ) e. NN0 ) | 
						
							| 164 |  | expp1 |  |-  ( ( ( 1 / 2 ) e. CC /\ ( d - A ) e. NN0 ) -> ( ( 1 / 2 ) ^ ( ( d - A ) + 1 ) ) = ( ( ( 1 / 2 ) ^ ( d - A ) ) x. ( 1 / 2 ) ) ) | 
						
							| 165 | 47 163 164 | sylancr |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 1 / 2 ) ^ ( ( d - A ) + 1 ) ) = ( ( ( 1 / 2 ) ^ ( d - A ) ) x. ( 1 / 2 ) ) ) | 
						
							| 166 | 161 165 | eqtrd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) = ( ( ( 1 / 2 ) ^ ( d - A ) ) x. ( 1 / 2 ) ) ) | 
						
							| 167 | 166 | oveq2d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( ( 1 / 2 ) ^ ( d - A ) ) x. ( 1 / 2 ) ) ) ) | 
						
							| 168 | 84 | rpcnd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 2 ^ -u ( ! ` A ) ) e. CC ) | 
						
							| 169 | 92 | rpcnd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 1 / 2 ) ^ ( d - A ) ) e. CC ) | 
						
							| 170 | 47 | a1i |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( 1 / 2 ) e. CC ) | 
						
							| 171 | 168 169 170 | mulassd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) x. ( 1 / 2 ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( ( 1 / 2 ) ^ ( d - A ) ) x. ( 1 / 2 ) ) ) ) | 
						
							| 172 | 167 171 | eqtr4d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) = ( ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) x. ( 1 / 2 ) ) ) | 
						
							| 173 | 158 172 | breq12d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` ( d + 1 ) ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) <-> ( ( 2 ^ -u ( ! ` d ) ) x. ( 2 ^ ( -u ( ! ` d ) x. d ) ) ) <_ ( ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) x. ( 1 / 2 ) ) ) ) | 
						
							| 174 | 134 173 | sylibrd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) -> ( 2 ^ -u ( ! ` ( d + 1 ) ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) ) ) | 
						
							| 175 |  | fveq2 |  |-  ( a = d -> ( ! ` a ) = ( ! ` d ) ) | 
						
							| 176 | 175 | negeqd |  |-  ( a = d -> -u ( ! ` a ) = -u ( ! ` d ) ) | 
						
							| 177 | 176 | oveq2d |  |-  ( a = d -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` d ) ) ) | 
						
							| 178 |  | ovex |  |-  ( 2 ^ -u ( ! ` d ) ) e. _V | 
						
							| 179 | 177 2 178 | fvmpt |  |-  ( d e. NN -> ( F ` d ) = ( 2 ^ -u ( ! ` d ) ) ) | 
						
							| 180 | 70 179 | syl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( F ` d ) = ( 2 ^ -u ( ! ` d ) ) ) | 
						
							| 181 |  | oveq1 |  |-  ( c = d -> ( c - A ) = ( d - A ) ) | 
						
							| 182 | 181 | oveq2d |  |-  ( c = d -> ( ( 1 / 2 ) ^ ( c - A ) ) = ( ( 1 / 2 ) ^ ( d - A ) ) ) | 
						
							| 183 | 182 | oveq2d |  |-  ( c = d -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) | 
						
							| 184 |  | ovex |  |-  ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) e. _V | 
						
							| 185 | 183 1 184 | fvmpt |  |-  ( d e. ( ZZ>= ` A ) -> ( G ` d ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) | 
						
							| 186 | 185 | adantl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( G ` d ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) | 
						
							| 187 | 180 186 | breq12d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( F ` d ) <_ ( G ` d ) <-> ( 2 ^ -u ( ! ` d ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( d - A ) ) ) ) ) | 
						
							| 188 | 70 | peano2nnd |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( d + 1 ) e. NN ) | 
						
							| 189 |  | fveq2 |  |-  ( a = ( d + 1 ) -> ( ! ` a ) = ( ! ` ( d + 1 ) ) ) | 
						
							| 190 | 189 | negeqd |  |-  ( a = ( d + 1 ) -> -u ( ! ` a ) = -u ( ! ` ( d + 1 ) ) ) | 
						
							| 191 | 190 | oveq2d |  |-  ( a = ( d + 1 ) -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` ( d + 1 ) ) ) ) | 
						
							| 192 |  | ovex |  |-  ( 2 ^ -u ( ! ` ( d + 1 ) ) ) e. _V | 
						
							| 193 | 191 2 192 | fvmpt |  |-  ( ( d + 1 ) e. NN -> ( F ` ( d + 1 ) ) = ( 2 ^ -u ( ! ` ( d + 1 ) ) ) ) | 
						
							| 194 | 188 193 | syl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( F ` ( d + 1 ) ) = ( 2 ^ -u ( ! ` ( d + 1 ) ) ) ) | 
						
							| 195 |  | peano2uz |  |-  ( d e. ( ZZ>= ` A ) -> ( d + 1 ) e. ( ZZ>= ` A ) ) | 
						
							| 196 |  | oveq1 |  |-  ( c = ( d + 1 ) -> ( c - A ) = ( ( d + 1 ) - A ) ) | 
						
							| 197 | 196 | oveq2d |  |-  ( c = ( d + 1 ) -> ( ( 1 / 2 ) ^ ( c - A ) ) = ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) | 
						
							| 198 | 197 | oveq2d |  |-  ( c = ( d + 1 ) -> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) ) | 
						
							| 199 |  | ovex |  |-  ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) e. _V | 
						
							| 200 | 198 1 199 | fvmpt |  |-  ( ( d + 1 ) e. ( ZZ>= ` A ) -> ( G ` ( d + 1 ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) ) | 
						
							| 201 | 195 200 | syl |  |-  ( d e. ( ZZ>= ` A ) -> ( G ` ( d + 1 ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) ) | 
						
							| 202 | 201 | adantl |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( G ` ( d + 1 ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) ) | 
						
							| 203 | 194 202 | breq12d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( F ` ( d + 1 ) ) <_ ( G ` ( d + 1 ) ) <-> ( 2 ^ -u ( ! ` ( d + 1 ) ) ) <_ ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( ( d + 1 ) - A ) ) ) ) ) | 
						
							| 204 | 174 187 203 | 3imtr4d |  |-  ( ( A e. NN /\ d e. ( ZZ>= ` A ) ) -> ( ( F ` d ) <_ ( G ` d ) -> ( F ` ( d + 1 ) ) <_ ( G ` ( d + 1 ) ) ) ) | 
						
							| 205 | 204 | expcom |  |-  ( d e. ( ZZ>= ` A ) -> ( A e. NN -> ( ( F ` d ) <_ ( G ` d ) -> ( F ` ( d + 1 ) ) <_ ( G ` ( d + 1 ) ) ) ) ) | 
						
							| 206 | 205 | a2d |  |-  ( d e. ( ZZ>= ` A ) -> ( ( A e. NN -> ( F ` d ) <_ ( G ` d ) ) -> ( A e. NN -> ( F ` ( d + 1 ) ) <_ ( G ` ( d + 1 ) ) ) ) ) | 
						
							| 207 | 23 27 31 35 69 206 | uzind4i |  |-  ( B e. ( ZZ>= ` A ) -> ( A e. NN -> ( F ` B ) <_ ( G ` B ) ) ) | 
						
							| 208 | 207 | impcom |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( F ` B ) <_ ( G ` B ) ) | 
						
							| 209 |  | 0xr |  |-  0 e. RR* | 
						
							| 210 | 1 | aaliou3lem1 |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( G ` B ) e. RR ) | 
						
							| 211 |  | elioc2 |  |-  ( ( 0 e. RR* /\ ( G ` B ) e. RR ) -> ( ( F ` B ) e. ( 0 (,] ( G ` B ) ) <-> ( ( F ` B ) e. RR /\ 0 < ( F ` B ) /\ ( F ` B ) <_ ( G ` B ) ) ) ) | 
						
							| 212 | 209 210 211 | sylancr |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( ( F ` B ) e. ( 0 (,] ( G ` B ) ) <-> ( ( F ` B ) e. RR /\ 0 < ( F ` B ) /\ ( F ` B ) <_ ( G ` B ) ) ) ) | 
						
							| 213 | 18 19 208 212 | mpbir3and |  |-  ( ( A e. NN /\ B e. ( ZZ>= ` A ) ) -> ( F ` B ) e. ( 0 (,] ( G ` B ) ) ) |