| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.a |  |-  G = ( c e. ( ZZ>= ` A ) |-> ( ( 2 ^ -u ( ! ` A ) ) x. ( ( 1 / 2 ) ^ ( c - A ) ) ) ) | 
						
							| 2 |  | aaliou3lem.b |  |-  F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) | 
						
							| 3 |  | eqid |  |-  ( ZZ>= ` A ) = ( ZZ>= ` A ) | 
						
							| 4 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 5 |  | uzid |  |-  ( A e. ZZ -> A e. ( ZZ>= ` A ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( A e. NN -> A e. ( ZZ>= ` A ) ) | 
						
							| 7 | 1 | aaliou3lem1 |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( G ` b ) e. RR ) | 
						
							| 8 | 1 2 | aaliou3lem2 |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( F ` b ) e. ( 0 (,] ( G ` b ) ) ) | 
						
							| 9 |  | 0xr |  |-  0 e. RR* | 
						
							| 10 |  | elioc2 |  |-  ( ( 0 e. RR* /\ ( G ` b ) e. RR ) -> ( ( F ` b ) e. ( 0 (,] ( G ` b ) ) <-> ( ( F ` b ) e. RR /\ 0 < ( F ` b ) /\ ( F ` b ) <_ ( G ` b ) ) ) ) | 
						
							| 11 | 9 7 10 | sylancr |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( ( F ` b ) e. ( 0 (,] ( G ` b ) ) <-> ( ( F ` b ) e. RR /\ 0 < ( F ` b ) /\ ( F ` b ) <_ ( G ` b ) ) ) ) | 
						
							| 12 | 8 11 | mpbid |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( ( F ` b ) e. RR /\ 0 < ( F ` b ) /\ ( F ` b ) <_ ( G ` b ) ) ) | 
						
							| 13 | 12 | simp1d |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( F ` b ) e. RR ) | 
						
							| 14 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 15 | 14 | a1i |  |-  ( A e. NN -> ( 1 / 2 ) e. CC ) | 
						
							| 16 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 17 |  | halfgt0 |  |-  0 < ( 1 / 2 ) | 
						
							| 18 | 16 17 | elrpii |  |-  ( 1 / 2 ) e. RR+ | 
						
							| 19 |  | rprege0 |  |-  ( ( 1 / 2 ) e. RR+ -> ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) ) | 
						
							| 20 |  | absid |  |-  ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) | 
						
							| 21 | 18 19 20 | mp2b |  |-  ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) | 
						
							| 22 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 23 | 21 22 | eqbrtri |  |-  ( abs ` ( 1 / 2 ) ) < 1 | 
						
							| 24 | 23 | a1i |  |-  ( A e. NN -> ( abs ` ( 1 / 2 ) ) < 1 ) | 
						
							| 25 |  | 2rp |  |-  2 e. RR+ | 
						
							| 26 |  | nnnn0 |  |-  ( A e. NN -> A e. NN0 ) | 
						
							| 27 | 26 | faccld |  |-  ( A e. NN -> ( ! ` A ) e. NN ) | 
						
							| 28 | 27 | nnzd |  |-  ( A e. NN -> ( ! ` A ) e. ZZ ) | 
						
							| 29 | 28 | znegcld |  |-  ( A e. NN -> -u ( ! ` A ) e. ZZ ) | 
						
							| 30 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ -u ( ! ` A ) e. ZZ ) -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) | 
						
							| 31 | 25 29 30 | sylancr |  |-  ( A e. NN -> ( 2 ^ -u ( ! ` A ) ) e. RR+ ) | 
						
							| 32 | 31 | rpcnd |  |-  ( A e. NN -> ( 2 ^ -u ( ! ` A ) ) e. CC ) | 
						
							| 33 | 4 15 24 32 1 | geolim3 |  |-  ( A e. NN -> seq A ( + , G ) ~~> ( ( 2 ^ -u ( ! ` A ) ) / ( 1 - ( 1 / 2 ) ) ) ) | 
						
							| 34 |  | seqex |  |-  seq A ( + , G ) e. _V | 
						
							| 35 |  | ovex |  |-  ( ( 2 ^ -u ( ! ` A ) ) / ( 1 - ( 1 / 2 ) ) ) e. _V | 
						
							| 36 | 34 35 | breldm |  |-  ( seq A ( + , G ) ~~> ( ( 2 ^ -u ( ! ` A ) ) / ( 1 - ( 1 / 2 ) ) ) -> seq A ( + , G ) e. dom ~~> ) | 
						
							| 37 | 33 36 | syl |  |-  ( A e. NN -> seq A ( + , G ) e. dom ~~> ) | 
						
							| 38 | 12 | simp2d |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> 0 < ( F ` b ) ) | 
						
							| 39 | 13 38 | elrpd |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( F ` b ) e. RR+ ) | 
						
							| 40 | 39 | rpge0d |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> 0 <_ ( F ` b ) ) | 
						
							| 41 | 12 | simp3d |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( F ` b ) <_ ( G ` b ) ) | 
						
							| 42 | 3 6 7 13 37 40 41 | cvgcmp |  |-  ( A e. NN -> seq A ( + , F ) e. dom ~~> ) | 
						
							| 43 |  | eqidd |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( F ` b ) = ( F ` b ) ) | 
						
							| 44 | 3 3 6 43 39 42 | isumrpcl |  |-  ( A e. NN -> sum_ b e. ( ZZ>= ` A ) ( F ` b ) e. RR+ ) | 
						
							| 45 |  | eqidd |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( G ` b ) = ( G ` b ) ) | 
						
							| 46 | 3 4 43 13 45 7 41 42 37 | isumle |  |-  ( A e. NN -> sum_ b e. ( ZZ>= ` A ) ( F ` b ) <_ sum_ b e. ( ZZ>= ` A ) ( G ` b ) ) | 
						
							| 47 | 7 | recnd |  |-  ( ( A e. NN /\ b e. ( ZZ>= ` A ) ) -> ( G ` b ) e. CC ) | 
						
							| 48 | 3 4 45 47 33 | isumclim |  |-  ( A e. NN -> sum_ b e. ( ZZ>= ` A ) ( G ` b ) = ( ( 2 ^ -u ( ! ` A ) ) / ( 1 - ( 1 / 2 ) ) ) ) | 
						
							| 49 |  | 1mhlfehlf |  |-  ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) | 
						
							| 50 | 49 | oveq2i |  |-  ( ( 2 ^ -u ( ! ` A ) ) / ( 1 - ( 1 / 2 ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) / ( 1 / 2 ) ) | 
						
							| 51 |  | 2cn |  |-  2 e. CC | 
						
							| 52 |  | mulcl |  |-  ( ( ( 2 ^ -u ( ! ` A ) ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) e. CC ) | 
						
							| 53 | 32 51 52 | sylancl |  |-  ( A e. NN -> ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) e. CC ) | 
						
							| 54 | 53 | div1d |  |-  ( A e. NN -> ( ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) / 1 ) = ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) ) | 
						
							| 55 |  | 1rp |  |-  1 e. RR+ | 
						
							| 56 |  | rpcnne0 |  |-  ( 1 e. RR+ -> ( 1 e. CC /\ 1 =/= 0 ) ) | 
						
							| 57 | 55 56 | ax-mp |  |-  ( 1 e. CC /\ 1 =/= 0 ) | 
						
							| 58 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 59 |  | divdiv2 |  |-  ( ( ( 2 ^ -u ( ! ` A ) ) e. CC /\ ( 1 e. CC /\ 1 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 ^ -u ( ! ` A ) ) / ( 1 / 2 ) ) = ( ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) / 1 ) ) | 
						
							| 60 | 57 58 59 | mp3an23 |  |-  ( ( 2 ^ -u ( ! ` A ) ) e. CC -> ( ( 2 ^ -u ( ! ` A ) ) / ( 1 / 2 ) ) = ( ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) / 1 ) ) | 
						
							| 61 | 32 60 | syl |  |-  ( A e. NN -> ( ( 2 ^ -u ( ! ` A ) ) / ( 1 / 2 ) ) = ( ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) / 1 ) ) | 
						
							| 62 |  | mulcom |  |-  ( ( 2 e. CC /\ ( 2 ^ -u ( ! ` A ) ) e. CC ) -> ( 2 x. ( 2 ^ -u ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) ) | 
						
							| 63 | 51 32 62 | sylancr |  |-  ( A e. NN -> ( 2 x. ( 2 ^ -u ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` A ) ) x. 2 ) ) | 
						
							| 64 | 54 61 63 | 3eqtr4d |  |-  ( A e. NN -> ( ( 2 ^ -u ( ! ` A ) ) / ( 1 / 2 ) ) = ( 2 x. ( 2 ^ -u ( ! ` A ) ) ) ) | 
						
							| 65 | 50 64 | eqtrid |  |-  ( A e. NN -> ( ( 2 ^ -u ( ! ` A ) ) / ( 1 - ( 1 / 2 ) ) ) = ( 2 x. ( 2 ^ -u ( ! ` A ) ) ) ) | 
						
							| 66 | 48 65 | eqtrd |  |-  ( A e. NN -> sum_ b e. ( ZZ>= ` A ) ( G ` b ) = ( 2 x. ( 2 ^ -u ( ! ` A ) ) ) ) | 
						
							| 67 | 46 66 | breqtrd |  |-  ( A e. NN -> sum_ b e. ( ZZ>= ` A ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` A ) ) ) ) | 
						
							| 68 | 42 44 67 | 3jca |  |-  ( A e. NN -> ( seq A ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` A ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` A ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` A ) ) ) ) ) |