| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.c |  |-  F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) | 
						
							| 2 |  | aaliou3lem.d |  |-  L = sum_ b e. NN ( F ` b ) | 
						
							| 3 |  | aaliou3lem.e |  |-  H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) ) | 
						
							| 4 |  | oveq2 |  |-  ( c = A -> ( 1 ... c ) = ( 1 ... A ) ) | 
						
							| 5 | 4 | sumeq1d |  |-  ( c = A -> sum_ b e. ( 1 ... c ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) | 
						
							| 6 |  | sumex |  |-  sum_ b e. ( 1 ... A ) ( F ` b ) e. _V | 
						
							| 7 | 5 3 6 | fvmpt |  |-  ( A e. NN -> ( H ` A ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) | 
						
							| 8 |  | fzfid |  |-  ( A e. NN -> ( 1 ... A ) e. Fin ) | 
						
							| 9 |  | elfznn |  |-  ( b e. ( 1 ... A ) -> b e. NN ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b e. NN ) | 
						
							| 11 |  | fveq2 |  |-  ( a = b -> ( ! ` a ) = ( ! ` b ) ) | 
						
							| 12 | 11 | negeqd |  |-  ( a = b -> -u ( ! ` a ) = -u ( ! ` b ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( a = b -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` b ) ) ) | 
						
							| 14 |  | ovex |  |-  ( 2 ^ -u ( ! ` b ) ) e. _V | 
						
							| 15 | 13 1 14 | fvmpt |  |-  ( b e. NN -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) | 
						
							| 16 |  | 2rp |  |-  2 e. RR+ | 
						
							| 17 |  | nnnn0 |  |-  ( b e. NN -> b e. NN0 ) | 
						
							| 18 | 17 | faccld |  |-  ( b e. NN -> ( ! ` b ) e. NN ) | 
						
							| 19 | 18 | nnzd |  |-  ( b e. NN -> ( ! ` b ) e. ZZ ) | 
						
							| 20 | 19 | znegcld |  |-  ( b e. NN -> -u ( ! ` b ) e. ZZ ) | 
						
							| 21 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ -u ( ! ` b ) e. ZZ ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) | 
						
							| 22 | 16 20 21 | sylancr |  |-  ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) | 
						
							| 23 | 22 | rpred |  |-  ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. RR ) | 
						
							| 24 | 15 23 | eqeltrd |  |-  ( b e. NN -> ( F ` b ) e. RR ) | 
						
							| 25 | 10 24 | syl |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( F ` b ) e. RR ) | 
						
							| 26 | 8 25 | fsumrecl |  |-  ( A e. NN -> sum_ b e. ( 1 ... A ) ( F ` b ) e. RR ) | 
						
							| 27 | 7 26 | eqeltrd |  |-  ( A e. NN -> ( H ` A ) e. RR ) |