| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aaliou3lem.c |  |-  F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) | 
						
							| 2 |  | aaliou3lem.d |  |-  L = sum_ b e. NN ( F ` b ) | 
						
							| 3 |  | aaliou3lem.e |  |-  H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) ) | 
						
							| 4 |  | oveq2 |  |-  ( c = A -> ( 1 ... c ) = ( 1 ... A ) ) | 
						
							| 5 | 4 | sumeq1d |  |-  ( c = A -> sum_ b e. ( 1 ... c ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) | 
						
							| 6 |  | sumex |  |-  sum_ b e. ( 1 ... A ) ( F ` b ) e. _V | 
						
							| 7 | 5 3 6 | fvmpt |  |-  ( A e. NN -> ( H ` A ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( A e. NN -> ( ( H ` A ) x. ( 2 ^ ( ! ` A ) ) ) = ( sum_ b e. ( 1 ... A ) ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) ) | 
						
							| 9 |  | fzfid |  |-  ( A e. NN -> ( 1 ... A ) e. Fin ) | 
						
							| 10 |  | 2rp |  |-  2 e. RR+ | 
						
							| 11 |  | nnnn0 |  |-  ( A e. NN -> A e. NN0 ) | 
						
							| 12 | 11 | faccld |  |-  ( A e. NN -> ( ! ` A ) e. NN ) | 
						
							| 13 | 12 | nnzd |  |-  ( A e. NN -> ( ! ` A ) e. ZZ ) | 
						
							| 14 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ ( ! ` A ) e. ZZ ) -> ( 2 ^ ( ! ` A ) ) e. RR+ ) | 
						
							| 15 | 10 13 14 | sylancr |  |-  ( A e. NN -> ( 2 ^ ( ! ` A ) ) e. RR+ ) | 
						
							| 16 | 15 | rpcnd |  |-  ( A e. NN -> ( 2 ^ ( ! ` A ) ) e. CC ) | 
						
							| 17 |  | elfznn |  |-  ( b e. ( 1 ... A ) -> b e. NN ) | 
						
							| 18 |  | fveq2 |  |-  ( a = b -> ( ! ` a ) = ( ! ` b ) ) | 
						
							| 19 | 18 | negeqd |  |-  ( a = b -> -u ( ! ` a ) = -u ( ! ` b ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( a = b -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` b ) ) ) | 
						
							| 21 |  | ovex |  |-  ( 2 ^ -u ( ! ` b ) ) e. _V | 
						
							| 22 | 20 1 21 | fvmpt |  |-  ( b e. NN -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) | 
						
							| 23 | 17 22 | syl |  |-  ( b e. ( 1 ... A ) -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) | 
						
							| 25 | 17 | adantl |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b e. NN ) | 
						
							| 26 | 25 | nnnn0d |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b e. NN0 ) | 
						
							| 27 | 26 | faccld |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) e. NN ) | 
						
							| 28 | 27 | nnzd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) e. ZZ ) | 
						
							| 29 | 28 | znegcld |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> -u ( ! ` b ) e. ZZ ) | 
						
							| 30 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ -u ( ! ` b ) e. ZZ ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) | 
						
							| 31 | 10 29 30 | sylancr |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) | 
						
							| 32 | 31 | rpcnd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( 2 ^ -u ( ! ` b ) ) e. CC ) | 
						
							| 33 | 24 32 | eqeltrd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( F ` b ) e. CC ) | 
						
							| 34 | 9 16 33 | fsummulc1 |  |-  ( A e. NN -> ( sum_ b e. ( 1 ... A ) ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) = sum_ b e. ( 1 ... A ) ( ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) ) | 
						
							| 35 | 24 | oveq1d |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) ) | 
						
							| 36 | 13 | adantr |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` A ) e. ZZ ) | 
						
							| 37 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 38 |  | expaddz |  |-  ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( -u ( ! ` b ) e. ZZ /\ ( ! ` A ) e. ZZ ) ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) ) | 
						
							| 39 | 37 38 | mpan |  |-  ( ( -u ( ! ` b ) e. ZZ /\ ( ! ` A ) e. ZZ ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) ) | 
						
							| 40 | 29 36 39 | syl2anc |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) = ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) ) | 
						
							| 41 |  | 2z |  |-  2 e. ZZ | 
						
							| 42 | 29 | zcnd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> -u ( ! ` b ) e. CC ) | 
						
							| 43 | 36 | zcnd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` A ) e. CC ) | 
						
							| 44 | 42 43 | addcomd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( -u ( ! ` b ) + ( ! ` A ) ) = ( ( ! ` A ) + -u ( ! ` b ) ) ) | 
						
							| 45 | 27 | nncnd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) e. CC ) | 
						
							| 46 | 43 45 | negsubd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( ! ` A ) + -u ( ! ` b ) ) = ( ( ! ` A ) - ( ! ` b ) ) ) | 
						
							| 47 | 44 46 | eqtrd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( -u ( ! ` b ) + ( ! ` A ) ) = ( ( ! ` A ) - ( ! ` b ) ) ) | 
						
							| 48 | 11 | adantr |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> A e. NN0 ) | 
						
							| 49 |  | elfzle2 |  |-  ( b e. ( 1 ... A ) -> b <_ A ) | 
						
							| 50 | 49 | adantl |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> b <_ A ) | 
						
							| 51 |  | facwordi |  |-  ( ( b e. NN0 /\ A e. NN0 /\ b <_ A ) -> ( ! ` b ) <_ ( ! ` A ) ) | 
						
							| 52 | 26 48 50 51 | syl3anc |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) <_ ( ! ` A ) ) | 
						
							| 53 | 27 | nnnn0d |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` b ) e. NN0 ) | 
						
							| 54 | 48 | faccld |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` A ) e. NN ) | 
						
							| 55 | 54 | nnnn0d |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ! ` A ) e. NN0 ) | 
						
							| 56 |  | nn0sub |  |-  ( ( ( ! ` b ) e. NN0 /\ ( ! ` A ) e. NN0 ) -> ( ( ! ` b ) <_ ( ! ` A ) <-> ( ( ! ` A ) - ( ! ` b ) ) e. NN0 ) ) | 
						
							| 57 | 53 55 56 | syl2anc |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( ! ` b ) <_ ( ! ` A ) <-> ( ( ! ` A ) - ( ! ` b ) ) e. NN0 ) ) | 
						
							| 58 | 52 57 | mpbid |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( ! ` A ) - ( ! ` b ) ) e. NN0 ) | 
						
							| 59 | 47 58 | eqeltrd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( -u ( ! ` b ) + ( ! ` A ) ) e. NN0 ) | 
						
							| 60 |  | zexpcl |  |-  ( ( 2 e. ZZ /\ ( -u ( ! ` b ) + ( ! ` A ) ) e. NN0 ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) e. ZZ ) | 
						
							| 61 | 41 59 60 | sylancr |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( 2 ^ ( -u ( ! ` b ) + ( ! ` A ) ) ) e. ZZ ) | 
						
							| 62 | 40 61 | eqeltrrd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( 2 ^ -u ( ! ` b ) ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) | 
						
							| 63 | 35 62 | eqeltrd |  |-  ( ( A e. NN /\ b e. ( 1 ... A ) ) -> ( ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) | 
						
							| 64 | 9 63 | fsumzcl |  |-  ( A e. NN -> sum_ b e. ( 1 ... A ) ( ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) | 
						
							| 65 | 34 64 | eqeltrd |  |-  ( A e. NN -> ( sum_ b e. ( 1 ... A ) ( F ` b ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) | 
						
							| 66 | 8 65 | eqeltrd |  |-  ( A e. NN -> ( ( H ` A ) x. ( 2 ^ ( ! ` A ) ) ) e. ZZ ) |