Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
|- F = ( a e. NN |-> ( 2 ^ -u ( ! ` a ) ) ) |
2 |
|
aaliou3lem.d |
|- L = sum_ b e. NN ( F ` b ) |
3 |
|
aaliou3lem.e |
|- H = ( c e. NN |-> sum_ b e. ( 1 ... c ) ( F ` b ) ) |
4 |
|
peano2nn |
|- ( A e. NN -> ( A + 1 ) e. NN ) |
5 |
|
eqid |
|- ( c e. ( ZZ>= ` ( A + 1 ) ) |-> ( ( 2 ^ -u ( ! ` ( A + 1 ) ) ) x. ( ( 1 / 2 ) ^ ( c - ( A + 1 ) ) ) ) ) = ( c e. ( ZZ>= ` ( A + 1 ) ) |-> ( ( 2 ^ -u ( ! ` ( A + 1 ) ) ) x. ( ( 1 / 2 ) ^ ( c - ( A + 1 ) ) ) ) ) |
6 |
5 1
|
aaliou3lem3 |
|- ( ( A + 1 ) e. NN -> ( seq ( A + 1 ) ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
7 |
|
3simpc |
|- ( ( seq ( A + 1 ) ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) -> ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
8 |
4 6 7
|
3syl |
|- ( A e. NN -> ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
9 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
10 |
|
ax-1cn |
|- 1 e. CC |
11 |
|
pncan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
12 |
9 10 11
|
sylancl |
|- ( A e. NN -> ( ( A + 1 ) - 1 ) = A ) |
13 |
12
|
oveq2d |
|- ( A e. NN -> ( 1 ... ( ( A + 1 ) - 1 ) ) = ( 1 ... A ) ) |
14 |
13
|
sumeq1d |
|- ( A e. NN -> sum_ b e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
15 |
14
|
oveq1d |
|- ( A e. NN -> ( sum_ b e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( F ` b ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = ( sum_ b e. ( 1 ... A ) ( F ` b ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) ) |
16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
17 |
|
eqid |
|- ( ZZ>= ` ( A + 1 ) ) = ( ZZ>= ` ( A + 1 ) ) |
18 |
|
eqidd |
|- ( ( A e. NN /\ b e. NN ) -> ( F ` b ) = ( F ` b ) ) |
19 |
|
fveq2 |
|- ( a = b -> ( ! ` a ) = ( ! ` b ) ) |
20 |
19
|
negeqd |
|- ( a = b -> -u ( ! ` a ) = -u ( ! ` b ) ) |
21 |
20
|
oveq2d |
|- ( a = b -> ( 2 ^ -u ( ! ` a ) ) = ( 2 ^ -u ( ! ` b ) ) ) |
22 |
|
ovex |
|- ( 2 ^ -u ( ! ` b ) ) e. _V |
23 |
21 1 22
|
fvmpt |
|- ( b e. NN -> ( F ` b ) = ( 2 ^ -u ( ! ` b ) ) ) |
24 |
|
2rp |
|- 2 e. RR+ |
25 |
|
nnnn0 |
|- ( b e. NN -> b e. NN0 ) |
26 |
|
faccl |
|- ( b e. NN0 -> ( ! ` b ) e. NN ) |
27 |
25 26
|
syl |
|- ( b e. NN -> ( ! ` b ) e. NN ) |
28 |
27
|
nnzd |
|- ( b e. NN -> ( ! ` b ) e. ZZ ) |
29 |
28
|
znegcld |
|- ( b e. NN -> -u ( ! ` b ) e. ZZ ) |
30 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ -u ( ! ` b ) e. ZZ ) -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) |
31 |
24 29 30
|
sylancr |
|- ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. RR+ ) |
32 |
31
|
rpcnd |
|- ( b e. NN -> ( 2 ^ -u ( ! ` b ) ) e. CC ) |
33 |
23 32
|
eqeltrd |
|- ( b e. NN -> ( F ` b ) e. CC ) |
34 |
33
|
adantl |
|- ( ( A e. NN /\ b e. NN ) -> ( F ` b ) e. CC ) |
35 |
|
1nn |
|- 1 e. NN |
36 |
|
eqid |
|- ( c e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( c - 1 ) ) ) ) = ( c e. ( ZZ>= ` 1 ) |-> ( ( 2 ^ -u ( ! ` 1 ) ) x. ( ( 1 / 2 ) ^ ( c - 1 ) ) ) ) |
37 |
36 1
|
aaliou3lem3 |
|- ( 1 e. NN -> ( seq 1 ( + , F ) e. dom ~~> /\ sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` 1 ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` 1 ) ) ) ) ) |
38 |
37
|
simp1d |
|- ( 1 e. NN -> seq 1 ( + , F ) e. dom ~~> ) |
39 |
35 38
|
mp1i |
|- ( A e. NN -> seq 1 ( + , F ) e. dom ~~> ) |
40 |
16 17 4 18 34 39
|
isumsplit |
|- ( A e. NN -> sum_ b e. NN ( F ` b ) = ( sum_ b e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( F ` b ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) ) |
41 |
|
oveq2 |
|- ( c = A -> ( 1 ... c ) = ( 1 ... A ) ) |
42 |
41
|
sumeq1d |
|- ( c = A -> sum_ b e. ( 1 ... c ) ( F ` b ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
43 |
|
sumex |
|- sum_ b e. ( 1 ... A ) ( F ` b ) e. _V |
44 |
42 3 43
|
fvmpt |
|- ( A e. NN -> ( H ` A ) = sum_ b e. ( 1 ... A ) ( F ` b ) ) |
45 |
44
|
oveq1d |
|- ( A e. NN -> ( ( H ` A ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = ( sum_ b e. ( 1 ... A ) ( F ` b ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) ) |
46 |
15 40 45
|
3eqtr4rd |
|- ( A e. NN -> ( ( H ` A ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = sum_ b e. NN ( F ` b ) ) |
47 |
46 2
|
eqtr4di |
|- ( A e. NN -> ( ( H ` A ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = L ) |
48 |
1 2 3
|
aaliou3lem4 |
|- L e. RR |
49 |
48
|
recni |
|- L e. CC |
50 |
49
|
a1i |
|- ( A e. NN -> L e. CC ) |
51 |
1 2 3
|
aaliou3lem5 |
|- ( A e. NN -> ( H ` A ) e. RR ) |
52 |
51
|
recnd |
|- ( A e. NN -> ( H ` A ) e. CC ) |
53 |
6
|
simp2d |
|- ( ( A + 1 ) e. NN -> sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ ) |
54 |
4 53
|
syl |
|- ( A e. NN -> sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ ) |
55 |
54
|
rpcnd |
|- ( A e. NN -> sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. CC ) |
56 |
50 52 55
|
subaddd |
|- ( A e. NN -> ( ( L - ( H ` A ) ) = sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <-> ( ( H ` A ) + sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) = L ) ) |
57 |
47 56
|
mpbird |
|- ( A e. NN -> ( L - ( H ` A ) ) = sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) ) |
58 |
57
|
eqcomd |
|- ( A e. NN -> sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) = ( L - ( H ` A ) ) ) |
59 |
|
eleq1 |
|- ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) = ( L - ( H ` A ) ) -> ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ <-> ( L - ( H ` A ) ) e. RR+ ) ) |
60 |
|
breq1 |
|- ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) = ( L - ( H ` A ) ) -> ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) <-> ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
61 |
59 60
|
anbi12d |
|- ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) = ( L - ( H ` A ) ) -> ( ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) <-> ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
62 |
58 61
|
syl |
|- ( A e. NN -> ( ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) <-> ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
63 |
51
|
adantr |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( H ` A ) e. RR ) |
64 |
|
simprl |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( L - ( H ` A ) ) e. RR+ ) |
65 |
|
difrp |
|- ( ( ( H ` A ) e. RR /\ L e. RR ) -> ( ( H ` A ) < L <-> ( L - ( H ` A ) ) e. RR+ ) ) |
66 |
63 48 65
|
sylancl |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) < L <-> ( L - ( H ` A ) ) e. RR+ ) ) |
67 |
64 66
|
mpbird |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( H ` A ) < L ) |
68 |
63 67
|
ltned |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( H ` A ) =/= L ) |
69 |
|
nnnn0 |
|- ( ( A + 1 ) e. NN -> ( A + 1 ) e. NN0 ) |
70 |
|
faccl |
|- ( ( A + 1 ) e. NN0 -> ( ! ` ( A + 1 ) ) e. NN ) |
71 |
4 69 70
|
3syl |
|- ( A e. NN -> ( ! ` ( A + 1 ) ) e. NN ) |
72 |
71
|
nnzd |
|- ( A e. NN -> ( ! ` ( A + 1 ) ) e. ZZ ) |
73 |
72
|
znegcld |
|- ( A e. NN -> -u ( ! ` ( A + 1 ) ) e. ZZ ) |
74 |
|
rpexpcl |
|- ( ( 2 e. RR+ /\ -u ( ! ` ( A + 1 ) ) e. ZZ ) -> ( 2 ^ -u ( ! ` ( A + 1 ) ) ) e. RR+ ) |
75 |
24 73 74
|
sylancr |
|- ( A e. NN -> ( 2 ^ -u ( ! ` ( A + 1 ) ) ) e. RR+ ) |
76 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ ( 2 ^ -u ( ! ` ( A + 1 ) ) ) e. RR+ ) -> ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) e. RR+ ) |
77 |
24 75 76
|
sylancr |
|- ( A e. NN -> ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) e. RR+ ) |
78 |
77
|
adantr |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) e. RR+ ) |
79 |
78
|
rpred |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) e. RR ) |
80 |
63 79
|
resubcld |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) e. RR ) |
81 |
48
|
a1i |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> L e. RR ) |
82 |
63 78
|
ltsubrpd |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) < ( H ` A ) ) |
83 |
80 63 81 82 67
|
lttrd |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) < L ) |
84 |
80 81 83
|
ltled |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) <_ L ) |
85 |
|
simprr |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) |
86 |
81 63 79
|
lesubadd2d |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) <-> L <_ ( ( H ` A ) + ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
87 |
85 86
|
mpbid |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> L <_ ( ( H ` A ) + ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
88 |
81 63 79
|
absdifled |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) <-> ( ( ( H ` A ) - ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) <_ L /\ L <_ ( ( H ` A ) + ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) ) |
89 |
84 87 88
|
mpbir2and |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) |
90 |
68 89
|
jca |
|- ( ( A e. NN /\ ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) -> ( ( H ` A ) =/= L /\ ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |
91 |
90
|
ex |
|- ( A e. NN -> ( ( ( L - ( H ` A ) ) e. RR+ /\ ( L - ( H ` A ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) -> ( ( H ` A ) =/= L /\ ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
92 |
62 91
|
sylbid |
|- ( A e. NN -> ( ( sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) e. RR+ /\ sum_ b e. ( ZZ>= ` ( A + 1 ) ) ( F ` b ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) -> ( ( H ` A ) =/= L /\ ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) ) |
93 |
8 92
|
mpd |
|- ( A e. NN -> ( ( H ` A ) =/= L /\ ( abs ` ( L - ( H ` A ) ) ) <_ ( 2 x. ( 2 ^ -u ( ! ` ( A + 1 ) ) ) ) ) ) |