| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2rp |  |-  2 e. RR+ | 
						
							| 2 |  | rpdivcl |  |-  ( ( 2 e. RR+ /\ B e. RR+ ) -> ( 2 / B ) e. RR+ ) | 
						
							| 3 | 1 2 | mpan |  |-  ( B e. RR+ -> ( 2 / B ) e. RR+ ) | 
						
							| 4 | 3 | rpred |  |-  ( B e. RR+ -> ( 2 / B ) e. RR ) | 
						
							| 5 |  | 2re |  |-  2 e. RR | 
						
							| 6 |  | 1lt2 |  |-  1 < 2 | 
						
							| 7 |  | expnbnd |  |-  ( ( ( 2 / B ) e. RR /\ 2 e. RR /\ 1 < 2 ) -> E. a e. NN ( 2 / B ) < ( 2 ^ a ) ) | 
						
							| 8 | 5 6 7 | mp3an23 |  |-  ( ( 2 / B ) e. RR -> E. a e. NN ( 2 / B ) < ( 2 ^ a ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( B e. RR+ -> E. a e. NN ( 2 / B ) < ( 2 ^ a ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. NN /\ B e. RR+ ) -> E. a e. NN ( 2 / B ) < ( 2 ^ a ) ) | 
						
							| 11 |  | simprl |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> a e. NN ) | 
						
							| 12 |  | simpll |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> A e. NN ) | 
						
							| 13 |  | nnaddm1cl |  |-  ( ( a e. NN /\ A e. NN ) -> ( ( a + A ) - 1 ) e. NN ) | 
						
							| 14 | 11 12 13 | syl2anc |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( a + A ) - 1 ) e. NN ) | 
						
							| 15 |  | simplr |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> B e. RR+ ) | 
						
							| 16 |  | rerpdivcl |  |-  ( ( 2 e. RR /\ B e. RR+ ) -> ( 2 / B ) e. RR ) | 
						
							| 17 | 5 15 16 | sylancr |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 / B ) e. RR ) | 
						
							| 18 | 11 | nnnn0d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> a e. NN0 ) | 
						
							| 19 |  | reexpcl |  |-  ( ( 2 e. RR /\ a e. NN0 ) -> ( 2 ^ a ) e. RR ) | 
						
							| 20 | 5 18 19 | sylancr |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ a ) e. RR ) | 
						
							| 21 | 11 12 | nnaddcld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( a + A ) e. NN ) | 
						
							| 22 |  | nnm1nn0 |  |-  ( ( a + A ) e. NN -> ( ( a + A ) - 1 ) e. NN0 ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( a + A ) - 1 ) e. NN0 ) | 
						
							| 24 |  | peano2nn0 |  |-  ( ( ( a + A ) - 1 ) e. NN0 -> ( ( ( a + A ) - 1 ) + 1 ) e. NN0 ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ( a + A ) - 1 ) + 1 ) e. NN0 ) | 
						
							| 26 | 25 | faccld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) e. NN ) | 
						
							| 27 | 26 | nnzd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) e. ZZ ) | 
						
							| 28 | 23 | faccld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( a + A ) - 1 ) ) e. NN ) | 
						
							| 29 | 28 | nnzd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( a + A ) - 1 ) ) e. ZZ ) | 
						
							| 30 | 12 | nnzd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> A e. ZZ ) | 
						
							| 31 | 29 30 | zmulcld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) e. ZZ ) | 
						
							| 32 | 27 31 | zsubcld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) e. ZZ ) | 
						
							| 33 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) e. ZZ ) -> ( 2 ^ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) e. RR+ ) | 
						
							| 34 | 1 32 33 | sylancr |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) e. RR+ ) | 
						
							| 35 | 34 | rpred |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) e. RR ) | 
						
							| 36 |  | simprr |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 / B ) < ( 2 ^ a ) ) | 
						
							| 37 | 17 20 36 | ltled |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 / B ) <_ ( 2 ^ a ) ) | 
						
							| 38 | 5 | a1i |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> 2 e. RR ) | 
						
							| 39 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 40 | 39 | a1i |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> 1 <_ 2 ) | 
						
							| 41 | 11 | nnred |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> a e. RR ) | 
						
							| 42 | 28 | nnred |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( a + A ) - 1 ) ) e. RR ) | 
						
							| 43 | 18 | nn0ge0d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> 0 <_ a ) | 
						
							| 44 | 28 | nnge1d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> 1 <_ ( ! ` ( ( a + A ) - 1 ) ) ) | 
						
							| 45 | 41 42 43 44 | lemulge12d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> a <_ ( ( ! ` ( ( a + A ) - 1 ) ) x. a ) ) | 
						
							| 46 |  | facp1 |  |-  ( ( ( a + A ) - 1 ) e. NN0 -> ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) = ( ( ! ` ( ( a + A ) - 1 ) ) x. ( ( ( a + A ) - 1 ) + 1 ) ) ) | 
						
							| 47 | 23 46 | syl |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) = ( ( ! ` ( ( a + A ) - 1 ) ) x. ( ( ( a + A ) - 1 ) + 1 ) ) ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) = ( ( ( ! ` ( ( a + A ) - 1 ) ) x. ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) | 
						
							| 49 | 28 | nncnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( a + A ) - 1 ) ) e. CC ) | 
						
							| 50 | 25 | nn0cnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ( a + A ) - 1 ) + 1 ) e. CC ) | 
						
							| 51 | 12 | nncnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> A e. CC ) | 
						
							| 52 | 49 50 51 | subdid |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ! ` ( ( a + A ) - 1 ) ) x. ( ( ( ( a + A ) - 1 ) + 1 ) - A ) ) = ( ( ( ! ` ( ( a + A ) - 1 ) ) x. ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) | 
						
							| 53 | 11 | nncnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> a e. CC ) | 
						
							| 54 | 21 | nncnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( a + A ) e. CC ) | 
						
							| 55 |  | 1cnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> 1 e. CC ) | 
						
							| 56 | 54 55 | npcand |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ( a + A ) - 1 ) + 1 ) = ( a + A ) ) | 
						
							| 57 | 53 51 56 | mvrraddd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ( ( a + A ) - 1 ) + 1 ) - A ) = a ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ! ` ( ( a + A ) - 1 ) ) x. ( ( ( ( a + A ) - 1 ) + 1 ) - A ) ) = ( ( ! ` ( ( a + A ) - 1 ) ) x. a ) ) | 
						
							| 59 | 48 52 58 | 3eqtr2d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) = ( ( ! ` ( ( a + A ) - 1 ) ) x. a ) ) | 
						
							| 60 | 45 59 | breqtrrd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> a <_ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) | 
						
							| 61 | 11 | nnzd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> a e. ZZ ) | 
						
							| 62 |  | eluz |  |-  ( ( a e. ZZ /\ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) e. ZZ ) -> ( ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) e. ( ZZ>= ` a ) <-> a <_ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) ) | 
						
							| 63 | 61 32 62 | syl2anc |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) e. ( ZZ>= ` a ) <-> a <_ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) ) | 
						
							| 64 | 60 63 | mpbird |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) e. ( ZZ>= ` a ) ) | 
						
							| 65 | 38 40 64 | leexp2ad |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ a ) <_ ( 2 ^ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) ) | 
						
							| 66 | 17 20 35 37 65 | letrd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 / B ) <_ ( 2 ^ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) ) | 
						
							| 67 |  | rpcnne0 |  |-  ( 2 e. RR+ -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 68 | 1 67 | mp1i |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 69 |  | expsub |  |-  ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) e. ZZ /\ ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) e. ZZ ) ) -> ( 2 ^ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) = ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) / ( 2 ^ ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) ) | 
						
							| 70 | 68 27 31 69 | syl12anc |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) = ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) / ( 2 ^ ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) ) | 
						
							| 71 |  | 2cn |  |-  2 e. CC | 
						
							| 72 | 71 | a1i |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> 2 e. CC ) | 
						
							| 73 | 12 | nnnn0d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> A e. NN0 ) | 
						
							| 74 | 28 | nnnn0d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( a + A ) - 1 ) ) e. NN0 ) | 
						
							| 75 | 72 73 74 | expmuld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) = ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) | 
						
							| 76 | 75 | oveq2d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) / ( 2 ^ ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) = ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) | 
						
							| 77 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) e. ZZ ) -> ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) e. RR+ ) | 
						
							| 78 | 1 27 77 | sylancr |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) e. RR+ ) | 
						
							| 79 | 78 | rpcnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) e. CC ) | 
						
							| 80 |  | rpexpcl |  |-  ( ( 2 e. RR+ /\ ( ! ` ( ( a + A ) - 1 ) ) e. ZZ ) -> ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) e. RR+ ) | 
						
							| 81 | 1 29 80 | sylancr |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) e. RR+ ) | 
						
							| 82 | 81 30 | rpexpcld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) e. RR+ ) | 
						
							| 83 | 82 | rpcnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) e. CC ) | 
						
							| 84 | 82 | rpne0d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) =/= 0 ) | 
						
							| 85 | 79 83 84 | divrecd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) = ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) | 
						
							| 86 | 70 76 85 | 3eqtrrd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) = ( 2 ^ ( ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) - ( ( ! ` ( ( a + A ) - 1 ) ) x. A ) ) ) ) | 
						
							| 87 | 66 86 | breqtrrd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 / B ) <_ ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) | 
						
							| 88 | 82 | rpreccld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) e. RR+ ) | 
						
							| 89 | 78 88 | rpmulcld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) e. RR+ ) | 
						
							| 90 | 89 | rpred |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) e. RR ) | 
						
							| 91 | 38 90 15 | ledivmuld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 / B ) <_ ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) <-> 2 <_ ( B x. ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) ) ) | 
						
							| 92 | 87 91 | mpbid |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> 2 <_ ( B x. ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) ) | 
						
							| 93 | 15 | rpcnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> B e. CC ) | 
						
							| 94 | 88 | rpcnd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) e. CC ) | 
						
							| 95 | 93 79 94 | mul12d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( B x. ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) = ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( B x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) ) | 
						
							| 96 | 92 95 | breqtrd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> 2 <_ ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( B x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) ) | 
						
							| 97 | 15 88 | rpmulcld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( B x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) e. RR+ ) | 
						
							| 98 | 97 | rpred |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( B x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) e. RR ) | 
						
							| 99 | 38 98 78 | ledivmuld |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ( 2 / ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) <_ ( B x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) <-> 2 <_ ( ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) x. ( B x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) ) ) | 
						
							| 100 | 96 99 | mpbird |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 / ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) <_ ( B x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) | 
						
							| 101 | 26 | nnnn0d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) e. NN0 ) | 
						
							| 102 |  | expneg |  |-  ( ( 2 e. CC /\ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) e. NN0 ) -> ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) = ( 1 / ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) ) | 
						
							| 103 | 71 101 102 | sylancr |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) = ( 1 / ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 x. ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) = ( 2 x. ( 1 / ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) ) ) | 
						
							| 105 | 78 | rpne0d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) =/= 0 ) | 
						
							| 106 | 72 79 105 | divrecd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 / ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) = ( 2 x. ( 1 / ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) ) ) | 
						
							| 107 | 104 106 | eqtr4d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 x. ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) = ( 2 / ( 2 ^ ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) ) | 
						
							| 108 | 93 83 84 | divrecd |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( B / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) = ( B x. ( 1 / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) | 
						
							| 109 | 100 107 108 | 3brtr4d |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> ( 2 x. ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) <_ ( B / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) | 
						
							| 110 |  | fvoveq1 |  |-  ( x = ( ( a + A ) - 1 ) -> ( ! ` ( x + 1 ) ) = ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) | 
						
							| 111 | 110 | negeqd |  |-  ( x = ( ( a + A ) - 1 ) -> -u ( ! ` ( x + 1 ) ) = -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) | 
						
							| 112 | 111 | oveq2d |  |-  ( x = ( ( a + A ) - 1 ) -> ( 2 ^ -u ( ! ` ( x + 1 ) ) ) = ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) | 
						
							| 113 | 112 | oveq2d |  |-  ( x = ( ( a + A ) - 1 ) -> ( 2 x. ( 2 ^ -u ( ! ` ( x + 1 ) ) ) ) = ( 2 x. ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) ) | 
						
							| 114 |  | fveq2 |  |-  ( x = ( ( a + A ) - 1 ) -> ( ! ` x ) = ( ! ` ( ( a + A ) - 1 ) ) ) | 
						
							| 115 | 114 | oveq2d |  |-  ( x = ( ( a + A ) - 1 ) -> ( 2 ^ ( ! ` x ) ) = ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ) | 
						
							| 116 | 115 | oveq1d |  |-  ( x = ( ( a + A ) - 1 ) -> ( ( 2 ^ ( ! ` x ) ) ^ A ) = ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) | 
						
							| 117 | 116 | oveq2d |  |-  ( x = ( ( a + A ) - 1 ) -> ( B / ( ( 2 ^ ( ! ` x ) ) ^ A ) ) = ( B / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) | 
						
							| 118 | 113 117 | breq12d |  |-  ( x = ( ( a + A ) - 1 ) -> ( ( 2 x. ( 2 ^ -u ( ! ` ( x + 1 ) ) ) ) <_ ( B / ( ( 2 ^ ( ! ` x ) ) ^ A ) ) <-> ( 2 x. ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) <_ ( B / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) ) | 
						
							| 119 | 118 | rspcev |  |-  ( ( ( ( a + A ) - 1 ) e. NN /\ ( 2 x. ( 2 ^ -u ( ! ` ( ( ( a + A ) - 1 ) + 1 ) ) ) ) <_ ( B / ( ( 2 ^ ( ! ` ( ( a + A ) - 1 ) ) ) ^ A ) ) ) -> E. x e. NN ( 2 x. ( 2 ^ -u ( ! ` ( x + 1 ) ) ) ) <_ ( B / ( ( 2 ^ ( ! ` x ) ) ^ A ) ) ) | 
						
							| 120 | 14 109 119 | syl2anc |  |-  ( ( ( A e. NN /\ B e. RR+ ) /\ ( a e. NN /\ ( 2 / B ) < ( 2 ^ a ) ) ) -> E. x e. NN ( 2 x. ( 2 ^ -u ( ! ` ( x + 1 ) ) ) ) <_ ( B / ( ( 2 ^ ( ! ` x ) ) ^ A ) ) ) | 
						
							| 121 | 10 120 | rexlimddv |  |-  ( ( A e. NN /\ B e. RR+ ) -> E. x e. NN ( 2 x. ( 2 ^ -u ( ! ` ( x + 1 ) ) ) ) <_ ( B / ( ( 2 ^ ( ! ` x ) ) ^ A ) ) ) |