Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem1.a |
|- ( ph -> F e. ( Poly ` ZZ ) ) |
2 |
|
aalioulem1.b |
|- ( ph -> X e. ZZ ) |
3 |
|
aalioulem1.c |
|- ( ph -> Y e. NN ) |
4 |
2
|
zcnd |
|- ( ph -> X e. CC ) |
5 |
3
|
nncnd |
|- ( ph -> Y e. CC ) |
6 |
3
|
nnne0d |
|- ( ph -> Y =/= 0 ) |
7 |
4 5 6
|
divcld |
|- ( ph -> ( X / Y ) e. CC ) |
8 |
|
eqid |
|- ( coeff ` F ) = ( coeff ` F ) |
9 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
10 |
8 9
|
coeid2 |
|- ( ( F e. ( Poly ` ZZ ) /\ ( X / Y ) e. CC ) -> ( F ` ( X / Y ) ) = sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) ) |
11 |
1 7 10
|
syl2anc |
|- ( ph -> ( F ` ( X / Y ) ) = sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) ) |
12 |
11
|
oveq1d |
|- ( ph -> ( ( F ` ( X / Y ) ) x. ( Y ^ ( deg ` F ) ) ) = ( sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) ) |
13 |
|
fzfid |
|- ( ph -> ( 0 ... ( deg ` F ) ) e. Fin ) |
14 |
|
dgrcl |
|- ( F e. ( Poly ` ZZ ) -> ( deg ` F ) e. NN0 ) |
15 |
1 14
|
syl |
|- ( ph -> ( deg ` F ) e. NN0 ) |
16 |
5 15
|
expcld |
|- ( ph -> ( Y ^ ( deg ` F ) ) e. CC ) |
17 |
|
0z |
|- 0 e. ZZ |
18 |
8
|
coef2 |
|- ( ( F e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> ( coeff ` F ) : NN0 --> ZZ ) |
19 |
1 17 18
|
sylancl |
|- ( ph -> ( coeff ` F ) : NN0 --> ZZ ) |
20 |
|
elfznn0 |
|- ( a e. ( 0 ... ( deg ` F ) ) -> a e. NN0 ) |
21 |
|
ffvelrn |
|- ( ( ( coeff ` F ) : NN0 --> ZZ /\ a e. NN0 ) -> ( ( coeff ` F ) ` a ) e. ZZ ) |
22 |
19 20 21
|
syl2an |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` a ) e. ZZ ) |
23 |
22
|
zcnd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` a ) e. CC ) |
24 |
|
expcl |
|- ( ( ( X / Y ) e. CC /\ a e. NN0 ) -> ( ( X / Y ) ^ a ) e. CC ) |
25 |
7 20 24
|
syl2an |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( X / Y ) ^ a ) e. CC ) |
26 |
23 25
|
mulcld |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) e. CC ) |
27 |
13 16 26
|
fsummulc1 |
|- ( ph -> ( sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) = sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) ) |
28 |
12 27
|
eqtrd |
|- ( ph -> ( ( F ` ( X / Y ) ) x. ( Y ^ ( deg ` F ) ) ) = sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) ) |
29 |
5
|
adantr |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> Y e. CC ) |
30 |
15
|
adantr |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( deg ` F ) e. NN0 ) |
31 |
29 30
|
expcld |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ ( deg ` F ) ) e. CC ) |
32 |
23 25 31
|
mulassd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) = ( ( ( coeff ` F ) ` a ) x. ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) ) ) |
33 |
2
|
adantr |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> X e. ZZ ) |
34 |
33
|
zcnd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> X e. CC ) |
35 |
6
|
adantr |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> Y =/= 0 ) |
36 |
20
|
adantl |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> a e. NN0 ) |
37 |
34 29 35 36
|
expdivd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( X / Y ) ^ a ) = ( ( X ^ a ) / ( Y ^ a ) ) ) |
38 |
37
|
oveq1d |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) = ( ( ( X ^ a ) / ( Y ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) ) |
39 |
34 36
|
expcld |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( X ^ a ) e. CC ) |
40 |
|
nnexpcl |
|- ( ( Y e. NN /\ a e. NN0 ) -> ( Y ^ a ) e. NN ) |
41 |
3 20 40
|
syl2an |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ a ) e. NN ) |
42 |
41
|
nncnd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ a ) e. CC ) |
43 |
41
|
nnne0d |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ a ) =/= 0 ) |
44 |
39 42 31 43
|
div13d |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( X ^ a ) / ( Y ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) = ( ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) x. ( X ^ a ) ) ) |
45 |
38 44
|
eqtrd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) = ( ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) x. ( X ^ a ) ) ) |
46 |
|
elfzelz |
|- ( a e. ( 0 ... ( deg ` F ) ) -> a e. ZZ ) |
47 |
46
|
adantl |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> a e. ZZ ) |
48 |
30
|
nn0zd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( deg ` F ) e. ZZ ) |
49 |
29 35 47 48
|
expsubd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ ( ( deg ` F ) - a ) ) = ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) ) |
50 |
3
|
adantr |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> Y e. NN ) |
51 |
50
|
nnzd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> Y e. ZZ ) |
52 |
|
fznn0sub |
|- ( a e. ( 0 ... ( deg ` F ) ) -> ( ( deg ` F ) - a ) e. NN0 ) |
53 |
52
|
adantl |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( deg ` F ) - a ) e. NN0 ) |
54 |
|
zexpcl |
|- ( ( Y e. ZZ /\ ( ( deg ` F ) - a ) e. NN0 ) -> ( Y ^ ( ( deg ` F ) - a ) ) e. ZZ ) |
55 |
51 53 54
|
syl2anc |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ ( ( deg ` F ) - a ) ) e. ZZ ) |
56 |
49 55
|
eqeltrrd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) e. ZZ ) |
57 |
|
zexpcl |
|- ( ( X e. ZZ /\ a e. NN0 ) -> ( X ^ a ) e. ZZ ) |
58 |
2 20 57
|
syl2an |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( X ^ a ) e. ZZ ) |
59 |
56 58
|
zmulcld |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) x. ( X ^ a ) ) e. ZZ ) |
60 |
45 59
|
eqeltrd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) e. ZZ ) |
61 |
22 60
|
zmulcld |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( coeff ` F ) ` a ) x. ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) ) e. ZZ ) |
62 |
32 61
|
eqeltrd |
|- ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) e. ZZ ) |
63 |
13 62
|
fsumzcl |
|- ( ph -> sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) e. ZZ ) |
64 |
28 63
|
eqeltrd |
|- ( ph -> ( ( F ` ( X / Y ) ) x. ( Y ^ ( deg ` F ) ) ) e. ZZ ) |